Transpose of a Matrix.

The matrix obtained from a given matrix A by changing its rows into columns or columns into rows is called transpose of Matrix A and is denoted by A^{T} or A^{\prime}.
From the definition it is obvious that if order of A is $m \times n$, then order of A^{T} is $n \times m$
Example: Transpose of matrix $\left[\begin{array}{lll}a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3}\end{array}\right]_{2 \times 3}$ is $\left[\begin{array}{ll}a_{1} & b_{1} \\ a_{2} & b_{2} \\ a_{3} & b_{3}\end{array}\right]_{3 \times 2}$

Properties of transpose:Let A and B be two matrices then
(i) $\left(A^{T}\right)^{T}=A$
(ii) $(A+B)^{T}=A^{T}+B^{T}, A$ and B being of the same order
(iii) $(k A)^{T}=k A^{T}, k$ be any scalar (real or complex)
(iv) $(A B)^{T}=B^{T} A^{T}, A$ and B being conformable for the product $A B$
(v) $\left(A_{1} A_{2} A_{3} \ldots . . A_{n-1} A_{n}\right)^{T}=A_{n}{ }^{T} A_{n-1}{ }^{T} \ldots \ldots . . A_{3}{ }^{T} A_{2}{ }^{T} A_{1}{ }^{T}$
(vi) $I^{T}=I$

