Determinant of a Matrix.

If $A=\left[\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right]$ be a square matrix, then its determinant, denoted by $|A|$ or $\operatorname{Det}(\mathrm{A})$ is defined as
$|A|=\left|\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right|$

Properties of determinant of a matrix

(i) $|A|$ Exists $\Leftrightarrow A$ is square matrix
(ii) $|A B| \neq A \| B \mid$
(iii) $\left|A^{T}\right|=|A|$
(iv) $|k A|=k^{n}|A|$, If A is a square matrix of order n
(v) If A and B are square matrices of same order then $|A B|=|B A|$
(vi) If A is a skew symmetric matrix of odd order then $|A|=0$
(vii) If $A=\operatorname{diag}\left(a_{1}, a_{2}, \ldots . . a_{n}\right)$ then $|A|=a_{1} a_{2} \ldots a_{n}$
(viii) $\left.A\right|^{n} \neq A^{n} \mid, \quad n \in N$.

