Special Types of Matrices.

(1) Symmetric and skew-symmetric matrix
(i) Symmetric matrix: A square matrix $A=\left[a_{i j}\right]$ is called symmetric matrix if $a_{i j}=a_{j i}$ for all i_{i} jor $A^{T}=A$

Example: $\left[\begin{array}{lll}a & h & g \\ h & b & f \\ g & f & c\end{array}\right]$

Note: Every unit matrix and square zero matrix are symmetric matrices.
Maximum number of different elements in a symmetric matrix is $\frac{n(n+1)}{2}$
(ii) Skew-symmetric matrix: A square matrix $A=\left[a_{i j}\right]$ is called skew- symmetric matrix if $a_{i j}=-a_{j i}$ for all i, j
or $A^{T}=-A$. Example. $\left[\begin{array}{ccc}0 & h & g \\ -h & 0 & f \\ -g & -f & 0\end{array}\right]$

Note: All principal diagonal elements of a skew- symmetric matrix are always zero because for any diagonal element. $a_{i j}=-a_{i j} \Rightarrow a_{i j}=0$
Trace of a skew symmetric matrix is always 0 .

Properties of symmetric and skew-symmetric matrices:

(i) If A is a square matrix, then $A+A^{T}, A A^{T}, A^{T} A$ are symmetric matrices, while $A-A^{T}$ is skewsymmetric matrix.
(ii) If A is a symmetric matrix, then $-A, K A, A^{T}, A^{n}, A^{-1}, B^{T} A B$ are also symmetric matrices, where $n \in N, K \in R$ and B is a square matrix of order that of A
(iii) If A is a skew-symmetric matrix, then
(a) $A^{2 n}$ is a symmetric matrix for $n \in N$,
(b) $A^{2 n+1}$ is a skew-symmetric matrix for $n \in N$,
(c) $k A$ is also skew-symmetric matrix, where $k \in R$,
(d) $B^{T} A B$ is also skew- symmetric matrix where B is a square matrix of order that of A.
(iv) If A, B are two symmetric matrices, then
(a) $A \pm B, A B+B A$ are also symmetric matrices,
(b) $A B-B A$ is a skew- symmetric matrix,
(c) $A B$ is a symmetric matrix, when $A B=B A$.
(v) If $A, B \quad$ are two skew-symmetric matrices, then
(a) $A \pm B, A B-B A$ are skew-symmetric matrices,
(b) $A B+B A$ is a symmetric matrix.
(vi) If A a skew-symmetric matrix and C is a column matrix, then $C^{T} A C$ is a zero matrix.
(vii) Every square matrix A can uniquelly be expressed as sum of a symmetric and skewsymmetric matrix i.e.

$$
A=\left[\frac{1}{2}\left(A+A^{T}\right)\right]+\left[\frac{1}{2}\left(A-A^{T}\right)\right] .
$$

(2) Singular and Non-singular matrix:Any square matrix A is said to be non-singular if $|A| \neq 0$, and a square matrix A is said to be singular if $|A|=0$. Here | $A \mid(\operatorname{or} \operatorname{det}(A)$ or simply $\operatorname{det}|A|$ means corresponding determinant of square matrix A.
Example: $A=\left[\begin{array}{ll}2 & 3 \\ 4 & 5\end{array}\right]$ then $|A|=\left|\begin{array}{ll}2 & 3 \\ 4 & 5\end{array}\right|=10-12=-2 \Rightarrow A$ is a non-singular matrix.
(3) Hermitian and skew-Hermitian matrix:A square matrix $A=\left[a_{i j}\right]$ is said to be hermitian
matrix if $a_{i j}=\bar{a}_{j i}$. \forall.j i.e. $A=A^{\theta}$. Example. $\left[\begin{array}{cc}a & b+i c \\ b-i c & d\end{array}\right],\left[\begin{array}{ccc}3 & 3-4 i & 5+2 i \\ 3+4 i & 5 & -2+i \\ 5-2 i & -2-i & 2\end{array}\right]$ are
Hermitian matrices.

Note: If A is a Hermitian matrix then $a_{i i}=\bar{a}_{i i} \Rightarrow a_{i i}$ is real $\forall i$, thus every diagonal element of a Hermitian matrix must be real.
\square A Hermitian matrix over the set of real numbers is actually a real symmetric matrix and a square matrix, $A=\left|a_{j j}\right|$ is said to be a skew-Hermitian if $a_{i j}=-\bar{a}_{j i} . \forall i$, ji.e. $A^{\theta}=-A$.
Example: $\left[\begin{array}{cc}0 & -2+i \\ 2-i & 0\end{array}\right],\left[\begin{array}{ccc}3 i & -3+2 i & -1-i \\ 3+2 i & -2 i & -2-4 i \\ 1-i & 2-4 i & 0\end{array}\right]$ are skew-Hermitian matrices.
\square If A is a skew-Hermitian matrix, then $a_{i i}=-\bar{a}_{i i} \Rightarrow a_{i i}+\bar{a}_{i i}=0$ i.e. $a_{i i}$ must be purely imaginary or zero.
\square A skew-Hermitian matrix over the set of real numbers is actually a real skew-symmetric matrix.
(4) Orthogonal matrix:A square matrix A is called orthogonal if $A A^{T}=I=A^{T} A$ i.e. if $A^{-1}=A^{T}$ Example: $A=\left[\begin{array}{cc}\cos \alpha & -\sin \alpha \\ -\sin \alpha & \cos \alpha\end{array}\right]$ is orthogonal because $A^{-1}=\left[\begin{array}{cc}\cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha\end{array}\right]=A^{T}$ In fact every unit matrix is orthogonal.
(5) Idempotent matrix: A square matrix A is called an idempotent matrix if $A^{2}=A$.

Example: $\left[\begin{array}{ll}1 / 2 & 1 / 2 \\ 1 / 2 & 1 / 2\end{array}\right]$ is an idempotent matrix, because $A^{2}=\left[\begin{array}{ll}1 / 4+1 / 4 & 1 / 4+1 / 4 \\ 1 / 4+1 / 4 & 1 / 4+1 / 4\end{array}\right]=\left[\begin{array}{ll}1 / 2 & 1 / 2 \\ 1 / 2 & 1 / 2\end{array}\right]=A$.

Also, $A=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$ and $B=\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]$ are idempotent matrices because $A^{2}=A$ and $B^{2}=B$. In fact every unit matrix is indempotent.
(6) Involutory matrix:A square matrix A is called an involutory matrix if $A^{2}=I$ or $A^{-1}=A$ Example: $A=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ is an involutory matrix because $A^{2}=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]=I$
In fact every unit matrix is involutory.
(7) Nilpotent matrix:A square matrix A is called a nilpotent matrix if there exists a $p \in N$ such that $A^{p}=0$
Example: $A=\left[\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right]$ is a nilpotent matrix because $A^{2}=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]=0 \quad($ Here $P=2)$
(8) Unitary matrix:A square matrix is said to be unitary, if $\bar{A}^{\prime} A=I$ since $\left|\bar{A}^{\prime}\right|=|A|$ and $\left|\bar{A}^{\prime} A\right|=\left|\bar{A}^{\prime} \| \quad A\right|$ therefore if $\bar{A}^{\prime} A=\mathrm{I}$, we have $\left|\bar{A}^{\prime} \| A\right|=1$
Thus the determinant of unitary matrix is of unit modulus. For a matrix to be unitary it must be non-singular.
Hence $\bar{A}^{\prime} A=I \Rightarrow A \bar{A}^{\prime}=I$
(9) Periodic matrix: A matrix A will be called a periodic matrix if $A^{k+1}=A$ where k is a positive integer. If, however k is the least positive integer for which $A^{k+1}=A$, then k is said to be the period of A.
(10) Differentiation of a matrix:If $A=\left[\begin{array}{cc}f(x) & g(x) \\ h(x) & l(x)\end{array}\right]$ then $\frac{d A}{d x}=\left[\begin{array}{ll}f^{\prime}(x) & g^{\prime}(x) \\ h^{\prime}(x) & l^{\prime}(x)\end{array}\right]$ is a differentiation of matrix A.
Example: If $A=\left[\begin{array}{cc}x^{2} & \sin x \\ 2 x & 2\end{array}\right]$ then $\frac{d A}{d x}=\left[\begin{array}{cc}2 x & \cos x \\ 2 & 0\end{array}\right]$
(11) Submatrix : Let A be $m \times n$ matrix, then a matrix obtained by leaving some rows or columns or both, of A is called a sub matrix of A. Example: If $A^{\prime}=\left[\begin{array}{lll}2 & 1 & 0 \\ 3 & 2 & 2 \\ 2 & 5 & 3\end{array}\right]$ and $\left[\begin{array}{ll}2 & 2 \\ 5 & 3\end{array}\right]$ are sub matrices of matrix $A=\left[\begin{array}{cccc}2 & 1 & 0 & -1 \\ 3 & 2 & 2 & 4 \\ 2 & 5 & 3 & 1\end{array}\right]$
(12) Conjugate of a matrix:The matrix obtained from any given matrix A containing complex number as its elements, on replacing its elements by the corresponding conjugate complex numbers is called conjugate of A and is denoted by \bar{A}. Example. $A=\left[\begin{array}{ccc}1+2 i & 2-3 i & 3+4 i \\ 4-5 i & 5+6 i & 6-7 i \\ 8 & 7+8 i & 7\end{array}\right]$ then $\bar{A}=\left[\begin{array}{ccc}1-2 i & 2+3 i & 3-4 i \\ 4+5 i & 5-6 i & 6+7 i \\ 8 & 7-8 i & 7\end{array}\right]$

Properties of conjugates:

(i) $(\bar{A})=A$
(ii) $\overline{(A+B)}=\bar{A}+\bar{B}$
(iii) $\overline{(\alpha A)}=\bar{\alpha} \bar{A}, \alpha$ being any number
(iv) $(\overline{A B})=\bar{A} \bar{B}, A$ and B being conformable for multiplication.
(13) Transpose conjugate of a matrix:The transpose of the conjugate of a matrix A is called transposed conjugate of A and is denoted by A^{θ}. The conjugate of the transpose of A is the same as the transpose of the conjugate of Ai.e. $\overline{\left(A^{\prime}\right)}=(\bar{A})^{\prime}=A^{\theta}$.

If $A=\left[a_{i j}\right]_{m \times n}$ then $A^{\theta}=\left[b_{j i}\right]_{n \times m}$ where $b_{j i}=\bar{a}_{i j} i . e$. the $(j, i)^{\text {th }}$ element of $A^{\theta}=$ the conjugate of $(i, j)^{\text {th }}$ element of A.

Example: If $A=\left[\begin{array}{ccc}1+2 i & 2-3 i & 3+4 i \\ 4-5 i & 5+6 i & 6-7 i \\ 8 & 7+8 i & 7\end{array}\right]$, then $A^{\theta}=\left[\begin{array}{ccc}1-2 i & 4+5 i & 8 \\ 2+3 i & 5-6 i & 7-8 i \\ 3-4 i & 6+7 i & 7\end{array}\right]$

Properties of transpose conjugate

(i) $\left(A^{\theta}\right)^{\theta}=A$
(ii) $(A+B)^{\theta}=A^{\theta}+B^{\theta}$
(iii) $(k A)^{\theta}=\bar{K} A^{\theta}, K$ being any number
(iv) $(A B)^{\theta}=B^{\theta} A^{\theta}$

