Adjoint of a Square Matrix.

Let $A=\left[a_{i j}\right]$ be a square matrix of order n and let $C_{i j}$ be cofactor of $a_{i j}$ in A . Then the transpose of the matrix of cofactors of elements of A is called the adjoint of A and is denoted by $\operatorname{adj} \mathrm{A}$
Thus, adj $A=\left[C_{i j}\right]^{T} \Rightarrow(\operatorname{adj} A)_{i j}=C_{j i}=$ cofactor of $a_{j i}$ in A.
If $A=\left[\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right]$, then $\operatorname{adj} A=\left[\begin{array}{lll}C_{11} & C_{12} & C_{13} \\ C_{21} & C_{22} & C_{23} \\ C_{31} & C_{32} & C_{33}\end{array}\right]^{T}=\left[\begin{array}{lll}C_{11} & C_{21} & C_{31} \\ C_{12} & C_{22} & C_{32} \\ C_{13} & C_{23} & C_{33}\end{array}\right]$;
Where $C_{i j}$ denotes the cofactor of $a_{i j}$ in A.
Example: $A=\left[\begin{array}{ll}p & q \\ r & s\end{array}\right], C_{11}=s, C_{12}=-r, C_{21}=-q, C_{22}=p$
$\therefore \operatorname{adj} A=\left[\begin{array}{cc}s & -r \\ -q & p\end{array}\right]^{T}=\left[\begin{array}{cc}s & -q \\ -r & p\end{array}\right]$

Note: The adjoint of a square matrix of order 2 can be easily obtained by interchanging the diagonal elements and changing signs of off diagonal elements.

