System of Simultaneous Linear Equations:

Consider the following system of n linear equations in n unknowns:
$a_{11} x_{1}+a_{12} x_{2}+\ldots \ldots \ldots+a_{1 n} x_{n}=d_{1}$
$a_{21} x_{1}+a_{22} x_{2}+\ldots \ldots \ldots+a_{2 n} x_{n}=d_{2}$
$a_{n 1} x_{1}+a_{n 2} x_{2}+\ldots \ldots .+a_{n n} x_{n}=d_{n}$
This system of equation can be written in the matrix form as
or $\mathrm{AX}=\mathrm{D}$.
The $\mathrm{n} \times \mathrm{n}$ matrix A is called the coefficient matrix of the system of linear equations.

Homogeneous and Non-Homogeneous System of Linear Equations

A system of equations $\mathrm{AX}=\mathrm{D}$ is called a homogeneous system if $\mathrm{D}=\mathrm{O}$. Otherwise it is called a non-homogeneous systems of equations.
Solution of a System of Equations
Consider the system of equation $A X=D$.
A set of values of the variables $x_{1}, x_{2}, \ldots . . ., x_{n}$ which simultaneously satisfy all the equations is called a solution of the system of equations.

Consistent System

If the system of equations has one or more solutions, then it is said to be a consistent system of equations, otherwise it is an inconsistent system of equations.

Solution of a Non-Homogeneous System of Linear Equations

There are two methods of solving a non-homogeneous system of simultaneous linear equations.
(i) Cramer's Rule
(ii) Matrix Method
(i) Cramer's Rule:

It is discussed under the topic of Determinants.

(ii) Matrix Method:

Consider the equations
$a_{1} x+b_{1} y+c_{1} z=d_{1}$,
$a_{2} x+b_{2} y+c_{2} z=d_{2}$,
$a_{3} x+b_{3} y+c_{3} z=d_{3}$.
If $\mathbf{A}=\left[\begin{array}{lll}a_{1} & b_{1} & c_{1} \\ a_{2} & b_{2} & c_{2} \\ a_{3} & b_{3} & c_{3}\end{array}\right] \quad \mathbf{X}=\left[\begin{array}{l}x \\ y \\ z\end{array}\right] \quad$ and $\mathbf{D}=\left[\begin{array}{l}d_{1} \\ d_{2} \\ d_{3}\end{array}\right]$
then the equation (i) is equivalent to the matrix equation
$\mathrm{AX}=\mathrm{D}$.
Multiplying both sides of (ii) by the inverse matrix A^{-1}, we get
$A^{-1}(A X)=A^{-1} D=>I X=A^{-1} D \quad\left[\because \cdot A^{-1} A=I\right]$
$\left.=>X=A^{-1} \mathrm{D}=>{ }^{\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\frac{1}{4}} \begin{array}{lll}A_{1} & A_{2} & A_{3} \\ B_{1} & B_{2} & B_{3} \\ C_{1} & C_{2} & C_{3}\end{array}\right] \times\left[\begin{array}{l}d_{1} \\ d_{2} \\ d_{3}\end{array}\right]$
where A_{1}, B_{1} etc. are the cofactors of a_{1}, b_{2} etc. in the determinant
$\Delta=\left|\begin{array}{lll}a_{1} & b_{1} & c_{1} \\ a_{2} & b_{2} & c_{2} \\ a_{3} & b_{3} & c_{3}\end{array}\right| \quad(\Delta \neq 0)$.
(i) If A is a non-singular matrix, then the system of equations given by $A X=D$ has a unique solutions given by $X=A^{-1} D$.
(ii) If A is a singular matrix, and $(\operatorname{adjA)D}=\mathrm{O}$, then the system of equations given by $\mathrm{AX}=\mathrm{D}$ is consistent, with infinitely many solutions.
(iii) If A is a singular matrix, and $(\operatorname{adjA}) D \neq O$, then the system of equation given by $A X=D$ is inconsistent.

Solution of Homogeneous System of Linear Equations:

Let $A X=O$ be a homogeneous system of n linear equation with n unknowns. Now if A is non-singular then the system of equations will have a unique solution i.e. trivial solution and if A is singular then the system of equations will have infinitely many solutions.

Illustration:

If the system of equations $x+a y-z=0,2 x-y+a z=0$ and $a x+y+2 z=0$ has a non trivial solution, then find the value of ' a '.

Solution:

$$
\begin{aligned}
& \text { Using } \mathrm{C}_{2} \rightarrow \mathrm{C}_{2}-\mathrm{aC}_{1}, \mathrm{C}_{3} \rightarrow \mathrm{C}_{3}+\mathrm{C}_{1} \text {, we get } \\
& \mathrm{A}=\left|\begin{array}{ccc}
1 & 0 & 0 \\
2 & -(1+2 a) & 2+a \\
a & 1-a^{2} & 2+a
\end{array}\right|=0 . \\
& =>(2+a)\left(-1-2 a-1+\mathrm{a}^{2}\right)=0 \\
& =>(a+2)\left(a^{2}-2 a-2\right)=0 \\
& =>a=-2, \mathrm{a}=1+\sqrt{ } 3 .
\end{aligned}
$$

Illustration:

Find the value of ' k ' for which the system of equations $(k+1)$ $x+8 y=4 k, k x+(k+3) y=3 k-1$ has no solution.

Solution:

For the system of equations to have no solution, we must have
$(k+1) / k=8 /(k+3) \neq 4 k /(3 k-1)$
$=>(k+1)(k+3)=8 k$ and $8(3 k-1) \neq 4 k(k+3)$
$=>\mathrm{k}^{2}-4 \mathrm{k}+3=0=>\mathrm{k}=1,3$.
For $=1,8(3 k-1)=16$ and $4 k(k+3)=16$.
For $k=3,8(3 k-1)=64$ and $4 k(k+3)=72$.
\therefore for $k=3,8(3 k-1) \neq 4 k(k+3)$.
$. \cdot \mathrm{k}=3$ is the required value of ' k ' for no solution.

