A system of equations $\mathrm{Ax}+\mathrm{By}=0$ is called a homogeneous system if $\mathrm{B}!=0$.
i.e. if $\mathrm{B} \neq \mathrm{O}$, it is called a non-homogeneous system of equations.
e.g.,

$$
2 x+5 y=0
$$

(When $B=0$, it is called Homegeneous Equation)

Solution of Non-homogeneous system of linear equations

(i) Matrix method: If

$$
\mathrm{AX}=\mathrm{B}
$$

, then

$$
\mathrm{X}=\mathrm{A}-1 \mathrm{~B}
$$

gives a unique solution, provided A is non-singular.

But if A is a singular matrix i.e., if

$$
|A|=0
$$

, then the system of equation

$$
\mathrm{AX}=\mathrm{B}
$$

may be consistent with infinitely many solutions or it may be inconsistent.
(ii) Rank method for solution of Non-Homogeneous system

$$
A X=B
$$

(a) Write down A, B
(b) Write the augmented matrix
[A:B]
(c) Reduce the augmented matrix to Echelon form by using elementary row operations.
(d) Find the number of non-zero rows in A and
[A:B]
to find the ranks of A and
[A:B]
respectively.
(e) If

$$
\rho(\mathrm{A}) \neq \rho(\mathrm{A}: \mathrm{B}),
$$

then the system is inconsistent.
(f)

$$
\rho(A)=\rho(A: B)=
$$

the number of unknowns, then the system has a unique solution.

If

$$
\rho(A)=\rho(A: B)<
$$

number of unknowns, then the system has an infinite number of solutions.

