Order of a Matrix.

A matrix having m rows and n columns is called a matrix of order $m \times n$ or simply $m \times n$ matrix (read as 'an m by n matrix). A matrix A of order $m \times n$ is usually written in the following manner
$A=\left[\begin{array}{ccccc}a_{11} & a_{12} & a_{13} & \ldots a_{1 j} & \ldots a_{1 n} \\ a_{21} & a_{22} & a_{23} & \ldots a_{2 j} & \ldots a_{2 n} \\ \ldots . . & \ldots . . & \ldots . . & \ldots . . & \ldots . . \\ a_{i 1} & a_{i 2} & a_{i 3} & \ldots a_{i j} & \ldots a_{i n} \\ \ldots . . & \ldots . . & \ldots . . & \ldots . . & \ldots . . \\ a_{m 1} & a_{m 2} & a_{m 3} & \ldots a_{m j} & \ldots a_{m n}\end{array}\right]$ or $A=\left[a_{i j}\right]_{m \times n}$, where $i=1,2, \ldots \ldots m$
Here $a_{i j}$ denotes the element of $\mathrm{i}^{\text {th }}$ row and $\mathrm{j}^{\text {th }}$ column. Example: order of matrix $\left[\begin{array}{ccc}3 & -1 & 5 \\ 6 & 2 & -7\end{array}\right]$ is 2×3

Note: A matrix of order $m \times n$ contains $m n$ elements. Every row of such a matrix contains n elements and every column contains m elements.

