Types of Matrices.

(1) Row matrix: A matrix is said to be a row matrix or row vector if it has only one row and any number of columns. Example. [$\left.\begin{array}{lll}5 & 0 & 3\end{array}\right]$ is a row matrix of order 1×3 and [2] is a row matrix of order 1×1.
(2) Column matrix: A matrix is said to be a column matrix or column vector if it has only one column and any number of rows. Example: $\left[\begin{array}{c}2 \\ 3 \\ -6\end{array}\right]$ is a column matrix of order 3×1 and [2] is a column matrix of order 1×1. Observe that [2] is both a row matrix as well as a column matrix.
(3) Singleton matrix: If in a matrix there is only one element then it is called singleton matrix.

Thus, $A=[a i j]_{m \times n}$ is a singleton matrix if $m=n=1$ Example.[2], [3], [a], [-3] are singleton matrices.
(4) Null or zero matrix: If in a matrix all the elements are zero then it is called a zero matrix and it is generally denoted by O. Thus $A=\left[a_{i j}\right]_{m \times n}$ is a zero matrix if $a_{i j}=0$ for all i and j.

Example: $[0],\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right],\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right],\left[\begin{array}{ll}0 & 0\end{array}\right]$ are all zero matrices, but of different orders.
(5) Square matrix: If number of rows and number of columns in a matrix are equal, then it is called a square matrix. Thus $A=\left[a_{i j}\right]_{m \times n}$ is a square matrix if $m=n$. Example: $\left[\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right]$ is a square matrix of order 3×3
(i) If $m \neq n$ then matrix is called a rectangular matrix.
(ii) The elements of a square matrix A for which $i=j$,i.e. $a_{11}, a_{22}, a_{33}, \ldots . a_{n n}$ are called diagonal elements and the line joining these elements is called the principal diagonal or leading diagonal of matrix A.
(iii) Trace of a matrix: The sum of diagonal elements of a square matrix. A is called the trace of matrix A, which is denoted by $\operatorname{tr} \mathrm{A} . \operatorname{tr} A=\sum_{i=1}^{n} a_{i i}=a_{11}+a_{22}+\ldots a_{n n}$

Properties of trace of a matrix:Let $A=\left[a_{i i}\right]_{n \times n}$ and $B=\left[b_{i j}\right]_{n \times n}$ and λ be a scalar
(i) $\operatorname{tr}(\lambda A)=\lambda \operatorname{tr}(A)$
(ii) $\operatorname{tr}(A-B)=\operatorname{tr}(A)-\operatorname{tr}(B)$
(iii) $\operatorname{tr}(A B)=\operatorname{tr}(B A)$
(iv) $\operatorname{tr}(A)=\operatorname{tr}\left(A^{\prime}\right)$ or $\operatorname{tr}\left(A^{T}\right)$
(v) $\operatorname{tr}\left(I_{n}\right)=n$
(vi) $\operatorname{tr}(0)=0$
(vii) $\operatorname{tr}(A B) \neq \operatorname{tr} A \cdot \operatorname{tr} B$
(6) Diagonal matrix: If all elements except the principal diagonal in a square matrix are zero, it is called a diagonal matrix. Thus a square matrix $A=\left[a_{i j}\right]$ is a diagonal matrix if $a_{i j}=0$, when $i \neq j$.

Example: $\left[\begin{array}{lll}2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 4\end{array}\right]$ is a diagonal matrix of order 3×3, which can be denoted by diag [2, 3, and 4$]$

Note: No element of principal diagonal in a diagonal matrix is zero.
Number of zeros in a diagonal matrix is given by $n^{2}-n$ where n is the order of the matrix.
\square A diagonal matrix of order $n \times n$ having $d_{1}, d_{2}, \ldots \ldots, d_{n}$ as diagonal elements is denoted by $\operatorname{diag}\left[d_{1}, d_{2}, \ldots, d_{n}\right]$.
(7) Identity matrix: A square matrix in which elements in the main diagonal are all ' 1 ' and rest are all zero is called an identity matrix or unit matrix. Thus, the square matrix $A=\left[a_{i j}\right]$ is an identity matrix, if $a_{i j}=\left\{\begin{array}{l}1, \text { if } i=j \\ 0, \text { if } i \neq j\end{array}\right.$
We denote the identity matrix of order n by I_{n}.
Example: [1], $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right],\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$ are identity matrices of order 1, 2 and 3 respectively.
(8) Scalar matrix : A square matrix whose all non-diagonal elements are zero and diagonal elements are equal is called a scalar matrix. Thus, if $A=\left[a_{i j}\right]$ is a square matrix and $a_{i j}=\left\{\begin{array}{l}\alpha, \text { if } i=j \\ 0, \text { if } i \neq j\end{array}\right.$, then A is a scalar matrix.
Example: [2], $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right],\left[\begin{array}{lll}5 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 5\end{array}\right]$ are scalar matrices of order 1, 2 and 3 respectively.

Note: Unit matrix and null square matrices are also scalar matrices.
(9) Triangular Matrix: A square matrix $\left[a_{i j}\right]$ is said to be triangular matrix if each element above or below the principal diagonal is zero. It is of two types
(i) Upper Triangular matrix: A square matrix $\left[a_{i j}\right]$ is called the upper triangular matrix, if $a_{i j}=0$ when $i>j$.
Example: $\left[\begin{array}{lll}3 & 1 & 2 \\ 0 & 4 & 3 \\ 0 & 0 & 6\end{array}\right]$ is an upper triangular matrix of order 3×3.
(ii) Lower Triangular matrix: A square matrix $\left[a_{i j}\right]$ is called the lower triangular matrix, if $a_{i j}=0$ when $i<j$.
Example: $\left[\begin{array}{lll}1 & 0 & 0 \\ 2 & 3 & 0 \\ 4 & 5 & 2\end{array}\right]$ is a lower triangular matrix of order 3×3.

Note: Minimum number of zeros in a triangular matrix is given by $\frac{n(n-1)}{2}$ where n is order of matrix.
Diagonal matrix is both upper and lower triangular.
\square A triangular matrix $a=\left[a_{i j}\right]_{n \times n}$ is called strictly triangular if $a_{i j}=0$ for $1 \leq i \leq n$

