Addition and Subtraction of Matrices.

If $A=\left[a_{i j}\right]_{m \times n}$ and $B=\left[b_{i j}\right]_{m \times n}$ are two matrices of the same order then their sum $A+B$ is a matrix whose each element is the sum of corresponding elements. i.e. $A+B=\left[a_{i j}+b_{i j}\right]_{m \times n}$
Example: If $A=\left[\begin{array}{ll}5 & 2 \\ 1 & 3 \\ 4 & 1\end{array}\right]$ and $B=\left[\begin{array}{ll}1 & 5 \\ 2 & 2 \\ 3 & 3\end{array}\right]$, then $A+B=\left[\begin{array}{ll}5+1 & 2+5 \\ 1+2 & 3+2 \\ 4+3 & 1+3\end{array}\right]=\left[\begin{array}{ll}6 & 7 \\ 3 & 5 \\ 7 & 4\end{array}\right]$

Similarly, their subtraction $A-B$ is defined as $A-B=\left[a_{i j}-b_{i j}\right]_{m \times n}$
i.e. in above example $A-B=\left[\begin{array}{ll}5-1 & 2-5 \\ 1-2 & 3-2 \\ 4-3 & 1-3\end{array}\right]=\left[\begin{array}{rr}4 & -3 \\ -1 & 1 \\ 1 & -2\end{array}\right]$

Note: Matrix addition and subtraction can be possible only when matrices are of the same order.

Properties of matrix addition:If A, B and C are matrices of same order, then
(i) $A+B=B+A$ (Commutative law)
(ii) $(A+B)+C=A+(B+C)$ (Associative law)
(iii) $A+O=O+A=A$, Where O is zero matrix which is additive identity of the matrix.
(iv) $A+(-A)=0=(-A)+A$, where $(-A)$ is obtained by changing the sign of every element of A, which is additive inverse of the matrix.
(v) $\left.\begin{array}{r}A+B=A+C \\ B+A=C+A\end{array}\right\} \Rightarrow B=C$ (Cancellation law)

