Scalar Multiplication of Matrices.

Let $A = [a_{ij}]_{m \times n}$ be a matrix and k be a number, then the matrix which is obtained by multiplying every element of A by k is called scalar multiplication of A by k and it is denoted by kA.

Thus, if $A = [a_{ij}]_{m \times n}$, then $kA = Ak = [ka_{ij}]_{m \times n}$. *Example*: If $A = \begin{bmatrix} 2 & 4 \\ 3 & 1 \\ 4 & 6 \end{bmatrix}$, then $5A = \begin{bmatrix} 10 & 20 \\ 15 & 5 \\ 20 & 30 \end{bmatrix}$

Properties of scalar multiplication:

If *A*, *B* are matrices of the same order and λ , μ are any two scalars then

(i) $\lambda(A+B) = \lambda A + \lambda B$	(ii) $(\lambda + \mu)A = \lambda A + \mu A$
(iii) $\lambda(\mu A) = (\lambda \mu A) = \mu(\lambda A)$	(iv) $(-\lambda A) = -(\lambda A) = \lambda (-A)$

Note: All the laws of ordinary algebra hold for the addition or subtraction of matrices and their multiplication by scalars.