Scalar Multiplication of Matrices.

Let $A=\left[a_{i j}\right]_{m \times n}$ be a matrix and k be a number, then the matrix which is obtained by multiplying every element of A by k is called scalar multiplication of A by k and it is denoted by $k A$.
Thus, if $A=\left[a_{i j}\right]_{m \times n}$, then $k A=A k=\left[k a_{i j}\right]_{m \times n}$. Example.If $A=\left[\begin{array}{ll}2 & 4 \\ 3 & 1 \\ 4 & 6\end{array}\right]$, then $5 A=\left[\begin{array}{cc}10 & 20 \\ 15 & 5 \\ 20 & 30\end{array}\right]$

Properties of scalar multiplication:

If A, B are matrices of the same order and λ, μ are any two scalars then
(i) $\lambda(A+B)=\lambda A+\lambda B$
(ii) $(\lambda+\mu) A=\lambda A+\mu A$
(iii) $\lambda(\mu A)=(\lambda \mu A)=\mu(\lambda A)$
(iv) $(-\lambda A)=-(\lambda A)=\lambda(-A)$

Note: All the laws of ordinary algebra hold for the addition or subtraction of matrices and their multiplication by scalars.

