Multiplication of Matrices.

Two matrices A and B are conformable for the product AB if the number of columns in A (premultiplier) is same as the number of rows in *B* (post multiplier). Thus, if $A = [a_{ij}]_{m \times n}$ and $B = [b_{ij}]_{n \times p}$ are two matrices of order $m \times n$ and $n \times p$ respectively, then their product *AB* is of order $m \times p$ and is defined as $(AB)_{ij} = \sum_{r=1}^{n} a_{ir}b_{rj}$

$$= [a_{i1}a_{i2}...a_{in}] \begin{bmatrix} b_{1j} \\ b_{2j} \\ \vdots \\ b_{nj} \end{bmatrix} = (i^{th} \text{ row of A})(j^{th} \text{ column of } B) \quad(i), \text{ where } i=1, 2, ..., m \text{ and } j=1, 2, ..., p$$

Now we define the product of a row matrix and a column matrix.

Let $A = \begin{bmatrix} a_1 a_2 \dots a_n \end{bmatrix}$ be a row matrix and $B = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix}$ be a column matrix. Then $AB = \begin{bmatrix} a_1 b_1 + a_2 b_2 + \dots + a_n b_n \end{bmatrix}$...(ii). Thus, from (i),

Then $AB = [a_1b_1 + a_2b_2 + + a_nb_n]$...(II). Thus, from (I), $(AB)_{ij} =$ Sum of the product of elements of l^{th} row of A with the corresponding elements of l^{th}

 $(AB)_{ij} =$ sum of the product of elements of 7 row of A with the corresponding elements of j column of B.

Properties of matrix multiplication

If A, B and C are three matrices s	such that their product is defined, then
(i) $AB \neq BA$	(Generally not commutative)
(ii) $(AB)C = A(BC)$	(Associative Law)
(iii) $IA = A = AI$	Where I is identity matrix for matrix multiplication
(iv) $A(B+C) = AB + AC$	(Distributive law)
(v) If $AB = AC \Rightarrow B = C$	(Cancellation law is not applicable)

(vi) If AB = 0 It does not mean that A = 0 or B = 0, again product of two non zero matrix may be a zero matrix.

Note: If A and B are two matrices such that AB exists, then BA may or may not exist.

 $\hfill\square$ The multiplication of two triangular matrices is a triangular matrix.

 $\hfill\square$ The multiplication of two diagonal matrices is also a diagonal matrix and

diag $(a_1, a_2, \dots, a_n) \times \text{diag} (b_1, b_2, \dots, b_n) = \text{diag} (a_1 b_1, a_2 b_2, \dots, a_n b_n)$

□ The multiplication of two scalar matrices is also a scalar matrix.

□ If *A* and *B* are two matrices of the same order, then

(i)
$$(A + B)^2 = A^2 + B^2 + AB + BA$$

(ii) $(A - B^2) = A^2 + B^2 - AB - BA$
(iii) $(A - B)(A + B) = A^2 - B^2 + AB - BA$
(iv) $(A + B)(A - B) = A^2 - B^2 - AB + BA$
(v) $A(-B) = (-A)B = -(AB)$