Multiplication of Matrices.

Two matrices A and B are conformable for the product $A B$ if the number of columns in A (premultiplier) is same as the number of rows in B (post multiplier). Thus, if $A=\left[a_{i j}\right]_{m \times n}$ and $B=\left[b_{i j}\right]_{n \times p}$ are two matrices of order $m \times n$ and $n \times p$ respectively, then their product $A B$ is of order $m \times p$ and is defined as $(A B)_{i j}=\sum_{r=1}^{n} a_{i r} b_{r j}$
$=\left[a_{i 1} a_{i 2} \ldots a_{i n}\right]\left[\begin{array}{c}b_{1 j} \\ b_{2 j} \\ \vdots \\ b_{n j}\end{array}\right]=\left(f^{\text {th }}\right.$ row of A$)\left(j^{\text {hh }}\right.$ column of $\left.B\right) \quad \ldots .$. (i), where $i=1,2, \ldots, m$ and $j=1,2, \ldots p$
Now we define the product of a row matrix and a column matrix.
Let $A=\left[a_{1} a_{2} \ldots . a_{n}\right]$ be a row matrix and $B=\left[\begin{array}{c}b_{1} \\ b_{2} \\ \vdots \\ b_{n}\end{array}\right]$ be a column matrix.
Then $A B=\left[a_{1} b_{1}+a_{2} b_{2}+\ldots .+a_{n} b_{n}\right] \quad$...(ii). Thus, from (i), $(A B)_{i j}=$ Sum of the product of elements of $\delta^{\text {th }}$ row of A with the corresponding elements of $j^{\text {th }}$ column of B.

Properties of matrix multiplication

If A, B and C are three matrices such that their product is defined, then
(i) $A B \neq B A$ (Generally not commutative)
(ii) $(A B) C=A(B C)$
(Associative Law)
(iii) $I A=A=A I \quad$ Where I is identity matrix for matrix multiplication
(iv) $A(B+C)=A B+A C \quad$ (Distributive law)
(v) If $A B=A C \nRightarrow B=C$
(Cancellation law is not applicable)
(vi) If $A B=0 \quad$ It does not mean that $A=0$ or $B=0$, again product of two non zero matrix may be a zero matrix.

Note: If A and B are two matrices such that $A B$ exists, then $B A$ may or may not exist.
The multiplication of two triangular matrices is a triangular matrix.
The multiplication of two diagonal matrices is also a diagonal matrix and
$\operatorname{diag}\left(a_{1}, a_{2}, \ldots . a_{n}\right) \times \operatorname{diag}\left(b_{1}, b_{2}, \ldots . b_{n}\right)=\operatorname{diag}\left(a_{1} b_{1}, a_{2} b_{2}, \ldots . a_{n} b_{n}\right)$
\square The multiplication of two scalar matrices is also a scalar matrix.
\square If A and B are two matrices of the same order, then
(i) $(A+B)^{2}=A^{2}+B^{2}+A B+B A$
(ii) $\left(A-B^{2}\right)=A^{2}+B^{2}-A B-B A$
(iii) $(A-B)(A+B)=A^{2}-B^{2}+A B-B A$
(iv) $(A+B)(A-B)=A^{2}-B^{2}-A B+B A$
(v) $A(-B)=(-A) B=-(A B)$

