Identity and Inverse elements

(1) **Identity element:**Let * be a binary operation on a set S. An element $e \in S$ is said be an identity element for the binary operation * if a * e = a = e * a for all $a \in S$. For addition on Z, 0 is the identity element, since a + 0 = a = 0 + a for all $a \in Z$. For multiplication on R, 1 is the identity element, since $1 \times a = a = a \times 1$ for all $a \in R$.

(2) **Inversible element for a binary operation with identity:** An element a of a set A is said to be inversible for a binary operation * with identity e if $\exists b \in A$ such that a * b = e = b * a. Also, then b is said to be an inverse of a and is denoted by a⁻¹. The inversible elements in A are also called the units in A. The identity element is always inversible and is its own inverse, since e * e = e * e = e. Thus e⁻¹ = e.