Identity and Inverse elements

(1) Identity element:Let * be a binary operation on a set S. An element $e \in S$ is said be an identity element for the binary operation * if a * $e=a=e$ * a for all $a \in S$.
For addition on $Z, 0$ is the identity element, since $a+0=a=0+a$ for all $a \in Z$.
For multiplication on $R, 1$ is the identity element, since $1 \times a=a=a \times 1$ for all $a \in R$.
(2) Inversible element for a binary operation with identity:An element a of a set A is said to be inversible for a binary operation * with identity e if $\exists b \in A$ such that $a * b=e=b$ * a.

Also, then b is said to be an inverse of a and is denoted by a^{-1}. The inversible elements in A are also called the units in A. The identity element is always inversible and is its own inverse, since e ${ }^{*} e=e^{*} e=e$. Thus $e^{-1}=e$.

