
Algorithms.

An algorithm is defined as a finite set of rules, which gives a sequence of operations for solving
a specific type of problem.

In other words, algorithm is a step-by-step procedure for solving problems.

An algorithm has following five important features:

(1) Finiteness

(2) Definiteness

(3) Completeness

(4) Input

(5) Output

(1) Finiteness: An algorithm should always terminate after a finite number of steps.

(2) Definiteness: Each step of algorithm should be precisely defined. This means that the rules
should be consistent and unambiguous.

(3)Completeness: The rules must be complete so that the algorithm can solve all problems of a
particular type for which the algorithm is designed.

(4)Input: An algorithm has certain inputs.

(5)Output: An algorithm has certain outputs which are in specific relation to the inputs.
An important consideration for an algorithm concerns its efficiency. Some algorithms are far
more efficient than others in that, when programmed, one may require fewer steps or perhaps
less memory than another and will therefore, be more satisfactory or economical in actually
solving problems on a computer. We shall often deal with considerations of this type in the
subsequent work.
In the development of an algorithm, sequence, selection and repetition (or interaction) play an
important role.

(1)Sequence: Suppose that we want to find the value of the expression 23 4 baba  for given
values of a and b. Algorithm (i.e., step by step procedure) for achieving this will consist of steps
given in fig. to be carried out one after the other.

This algorithm, you will agree, is very straightforward, consisting of simple steps which are to be
carried out one after the other. We say that such an algorithm is a sequence of steps, meaning
that
(i) At a time only one step of the algorithm is to be carried out.
(ii) Every step of the algorithm is to be carried out once and only once; none is repeated and
none is omitted.
(iii) The order of carrying out the steps of the algorithm is the same as that in which they are
written.
(iv) Termination of the last step of the algorithm indicates the end of the algorithm.
Here afterwards we shall follow the convention that (i) the successive steps in a sequence will be
written on successive lines and hence (ii) steps will not be necessarily numbered as they are in
fig.

(2) Selection: An algorithm which consists of only a sequence, is not sufficient for solving any
type of problem. Let us consider the problem of solving an equation of the type rnxm 
(where m, n, r are given integers) for integral values of x. We immediately use laws of algebra to
find 0,)( nnmrx . Let us call an algorithm that works for only some (not necessarily all)

possible sets of input values, a semi-algorithm.

1. Get the value of a

2. Get the value of b

3. Calculate 3a , call it S

4. Calculate ab4 , call it T

5. Calculate 2b , call it V

6. Find the sum VTS  , call it M

7. Write the value of M as answer.

Steps of an algorithm to evaluate 23 4 baba  , given the values of a, b

Semi-algorithm (for the above problem) :
Step 1: Get the values of m, r and n.

Step 2: Subtract m from r, call this difference b.
Step 3: Divide b by n; print this result as the value of x.

The above steps are certainly efficient, As an example, let 5,9  nm and 24r , in which case we

have 2459  x . Then in step 2, we have b 924 i.e., 15b and in step 3, we have 3
5

15


n

b ,

and so we print x = 3.

The above steps have two fatal flaws, however. First, if n equals 0, then either rm  and x can
have any integral value, or rm  and no solution is possible i.e., there is no integer x which may
satisfy the given equation. Second, if there is a non-zero remainder when b is divided by n then
again there is no integer x which may satisfy the given equation. So we must modify our
algorithm to deal with all such situations as may arise. Given below is the modified algorithm
which suits all the possible situations that may arise.

Step 1 : Get the value of m, n and r

Step 2 :If 0n and m r

 then go to step 7

 else go to step 3

Step 3 :If 0n and m r

 then go to step 6

 elsego to step 4

Step 4 :Subtractm from r, call this difference b (i.e.,
mrb )

Step 5: Divideb by n;

 If there is a remainder

 thengo to step 6

 else print the value of
n

b
, which is the required

value of x.

Step 6: Print ‘No integer satisfies this equation’. Stop

Step 7 :Print ‘Any integer satisfies this equation’. Stop

Algorithm to solve an equation of the form
m + nx = r, where m, n, r, x are integers

The above algorithm provides the person or computer that will execute the algorithm with an
ability to choose the step to be carried out depending upon the values of m, n and r (and
subsequently, the value of b). This ability is called selection. The power of selection is that it
permits that different paths could be followed, depending upon the requirement of the
problem, by the one who executes the algorithm.

In the above algorithm, selection is expressed by using the special words ‘if, ‘then’, ‘else’. Further,
it may be noted that all that is written using these special words (once) constitutes one step.
Note the way it is

written. Nothing appears below the word ‘if’ till that step is over. This is known as indentation.
The words ‘then’ and ‘else’ come with exactly same indentation with respect to the word ‘if’.

(3) Iteration or Repetition: In forming an algorithm certain steps are required to be repeated
before algorithm terminates after giving an answer. This is known as iteration or repetition.

Let us consider the problem of finding the just prime number greater than a given positive
integer. The following list of steps shows the step by step procedure to be followed for solving
the problem.

We see in the above procedure that the steps

“add 1 to it

test new number for primeness

Consider the given integer

























.......

essfor primennumber new test

 it to1 add

stop and down it write

 prime,is it

 essfor primennumber new test

it to1 add

stop and down it write

 prime,is it

essfor primennumber new test

it to1 add

if

else

then

if

else

then

if

S

S

S

Algorithm for finding a prime number
greater then a given positive integer

if it is prime

then write it down and stop ”

are repeated again and again till (after a finite number of repetitions) we get a prime number
and print it. If this sequence (which involves a decision also) is denoted by S, then S is repeated
again and again till, we get the result and print the result. This is technically known as iteration
or repetition. The way of writing adopted in fig. poses a problem as we do not know the number
of times S is repeated. This number depends upon the given positive integer. The difficulty
presented above is overcome by introducing a new way of writing iterations in algorithms. The
algorithm shown in fig. is (in new ways) then written as shown below

Two different ways of writing iteration
occuring in fig.

Consider the given number

repeat

add 1 to it

Consider the given number

add 1 to it
while the new number is not
prime

Or

