Distance Formula

The distance between two points $P\left(x_{1}, y_{1}\right)$ and $Q\left(x_{2}, y_{2}\right)$ is given by $P Q=\sqrt{(P R)^{2}+(Q R)^{2}}=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$

Note:The distance of a point $M\left(x_{0}, y_{0}\right)$ from origin $O(0,0)$ $O M=\sqrt{\left(x_{0}^{2}+y_{0}^{2}\right)}$.
If distance between two points is given then use \pm sign.

When the line PQ is parallel to the y -axis, the abscissa of point P and Q will be equal i.e, $x_{1}=x_{2}$;
$\therefore P Q \neq y_{2}-y_{1} \mid$

When the segment PQ is parallel to the x -axis, the ordinate of the points P and Q will be equal i.e., $y_{1}=y_{2}$. Therefore $P Q \neq x_{2}-x_{1} \mid$
(1) Distance between two points in polar co-ordinates: Let O be the pole and $O X$ be the initial line. Let P and Q be two given points whose polar co-ordinates are $\left(r_{1}, \theta_{1}\right)$ and (r_{2}, θ_{2}) respectively.

Then $O P=r_{1}, O Q=r_{2}$
$\angle P O X=\theta_{1}$ and $\angle Q O X=\theta_{2}$
Then $\angle P O Q=\left(\theta_{1}-\theta_{2}\right)$
In $\triangle P O Q$, from cosine rule $\cos \left(\theta_{1}-\theta_{2}\right)=\frac{(O P)^{2}+(O Q)^{2}-(P Q)^{2}}{2 O P . O Q}$
$\therefore(P Q)^{2}=r_{1}^{2}+r_{2}^{2}-2 r_{1} r_{2} \cos \left(\theta_{1}-\theta_{2}\right)$

$\therefore P Q=\sqrt{r_{1}^{2}+r_{2}^{2}-2 r_{1} r_{2} \cos \left(\theta_{1}-\theta_{2}\right)}$

Note: Always taking θ_{1} and θ_{2} in radians.

