Geometrical Conditions.

(1) Properties of triangles
(i) In any triangle $A B C, A B+B C>A C$ and $|A B-B C|<A C$.
(ii) The $\triangle A B C$ is equilateral $\Leftrightarrow A B=B C=C A$.
(iii) The $\triangle A B C$ is a right angled triangle $\Leftrightarrow A B^{2}=A C^{2}+B C^{2}$ or $A C^{2}=A B^{2}+B C^{2}$ or $B C^{2}=A B^{2}+A C^{2}$.
(iv) The $\triangle A B C$ is isosceles $\Leftrightarrow A B=B C$ or $B C=C A$ or $A B=A C$.

(2) Properties of quadrilaterals

(i) The quadrilateral $A B C D$ is a parallelogram if and only if

(a) $A B=D C, A D=B C$, or (b) the middle points of BD and AC are the same,

In a parallelogram diagonals AC and BD are not equal and $\theta \neq \frac{\pi}{2}$.
(ii) The quadrilateral $A B C D$ is a rectangle if and only if
(a) $A B=C D, A D=B C$ and $A C^{2}=A B^{2}+B C^{2}$ or, (b) $A B=C D, A D=B C, A C=B D$ or, (c) the middle points of $A C$ and BD are the same and $\mathrm{AC}=\mathrm{BD} .(\theta \neq \pi / 2)$

(iii) The quadrilateral $A B C D$ is a rhombus (but not a square) if and only if (a) $A B=B C=C D=D A$ and $A C \neq B D$ or, (b) the middle points of $A C$ and $B D$ are the same and $A B=A D$ but $A C \neq B D .(\theta=\pi / 2)$
(iv) The quadrilateral $A B C D$ is a square if and only if

(a) $A B=B C=C D=D A$ and $A C=B D$ or (b) the middle points of AC and BD are the same and $A C=B D,(\theta=\pi / 2), A B=A D$.

Note: Diagonals of square, rhombus, rectangle and parallelogram always bisect each other. \square Diagonals of rhombus and square bisect each other at right angle.
\square Four given points are collinear, if area of quadrilateral is zero.

