Area of some Geometrical figures.

(1) Area of a triangle: The area of a triangle ABC with vertices $A\left(x_{1}, y_{1}\right) ; B\left(x_{2}, y_{2}\right)$ and $C\left(x_{3}, y_{3}\right)$.

The area of triangle $A B C$ is denoted by ' Δ 'and is given as

$$
\left.\Delta=\frac{1}{2}\left|\begin{array}{lll}
x_{1} & y_{1} & 1 \\
x_{2} & y_{2} & 1 \\
x_{3} & y_{3} & 1
\end{array}\right|=\frac{1}{2} \right\rvert\,\left(x_{1}\left(y_{2}-y_{3}\right)+x_{2}\left(y_{3}-y_{1}\right)+x_{3}\left(y_{1}-y_{2}\right) \mid\right.
$$

In equilateral triangle

(i) Having sides a, area is $\frac{\sqrt{3}}{4} a^{2}$.
(ii) Having length of perpendicular as ' p ' area is $\frac{\left(p^{2}\right)}{\sqrt{3}}$.

Note: If a triangle has polar co-ordinates $\left(r_{1}, \theta_{1}\right),\left(r_{2}, \theta_{2}\right)$ and $\left(r_{3}, \theta_{3}\right)$ then its area
$\Delta=\frac{1}{2}\left[r_{1} r_{2} \sin \left(\theta_{2}-\theta_{1}\right)+r_{2} r_{3} \sin \left(\theta_{3}-\theta_{2}\right)+r_{3} r_{1} \sin \left(\theta_{1}-\theta_{3}\right)\right]$
If area is a rational number. Then the triangle cannot be equilateral.
(2)Collinear points: Three points $A\left(x_{1}, y_{1}\right) ; B\left(x_{2}, y_{2}\right) ; C\left(x_{3}, y_{3}\right)$ are collinear. If area of triangle is zero,
i.e.,

$$
\text { (i) } \Delta=0 \Rightarrow \frac{1}{2}\left|\begin{array}{lll}
x_{1} & y_{1} & 1 \\
x_{2} & y_{2} & 1 \\
x_{3} & y_{3} & 1
\end{array}\right|=0 \Rightarrow\left|\begin{array}{lll}
x_{1} & y_{1} & 1 \\
x_{2} & y_{2} & 1 \\
x_{3} & y_{3} & 1
\end{array}\right|=0
$$

(ii) $A B+B C=A C$ or $A C+B C=A B$ or $A C+A B=B C$
(3)Area of a quadrilateral: If $\left(x_{1}, y_{1}\right) ;\left(x_{2}, y_{2}\right) ;\left(x_{3}, y_{3}\right)$ and $\left(x_{4}, y_{4}\right)$ are vertices of a quadrilateral, then its Area $=\frac{1}{2}\left[\left(x_{1} y_{2}-x_{2} y_{1}\right)+\left(x_{2} y_{3}-x_{3} y_{2}\right)+\left(x_{3} y_{4}-x_{4} y_{3}\right)+\left(x_{4} y_{1}-x_{1} y_{4}\right)\right]$

Note: If two opposite vertex of rectangle are $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$, then its area is $\left|\left(y_{2}-y_{1}\right)\left(x_{2}-x_{1}\right)\right|$.

It two opposite vertex of a square are $A\left(x_{1}, y_{1}\right)$ and $C\left(x_{2}, y_{2}\right)$, then its area is

$$
=\frac{1}{2} A C^{2}=\frac{1}{2}\left[\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}\right]
$$

(4) Area of polygon: The area of polygon whose vertices are $\left(x_{1}, y_{1}\right) ;\left(x_{2}, y_{2}\right) ;\left(x_{3}, y_{3}\right) ; \ldots\left(x_{n,} y_{n}\right)$ is $=\frac{1}{2}\left|\left\{\left(x_{1} y_{2}-x_{2} y_{1}\right)+\left(x_{2} y_{3}-x_{3} y_{2}\right)+\ldots .+\left(x_{n} y_{1}-x_{1} y_{n}\right)\right\}\right|$
orStair method: Repeat first co-ordinates one time in last for down arrow use positive sign and for up arrow use negative sign.
$\therefore \quad$ Area of polygon $=\frac{1}{2}\left|\begin{array}{cc}x_{1} & y_{1} \\ x_{2} & y_{2} \\ x_{3} & y_{3} \\ : & : \\ : & : \\ x_{n} & y_{n} \\ x_{1} & y_{1}\end{array}\right|>\frac{1}{2}\left|\left\{\left(x_{1} y_{2}+x_{2} y_{3}+\ldots .+x_{n} y_{1}\right)-\left(y_{1} x_{2}+y_{2} x_{3}+\ldots .+y_{n} x_{1}\right)\right\}\right|$

