Transformation of Axes.

(1) Shifting of origin without rotation of axes: Let $P \equiv (x, y)$ with respect to axes OX and OY.

Let $O' \equiv (\alpha, \beta)$ with respect to axes OX and OY and let $P \equiv (x', y')$ with respect to axes O'X' and O'Y', where OX and O'X' are parallel and OY and O'Y' are parallel.

Then $x = x' + \alpha, y = y' + \beta$ or $x' = x - \alpha, y' = y - \beta$

Thus if origin is shifted to point (α, β) without rotation of axes, then new equation of curve can be obtained by putting $x + \alpha$ in place of x and $y + \beta$ in place of y.

(2)**Rotation of axes without changing the origin:** Let O be the origin. Let $P \equiv (x, y)$ with

respect to axes OX and OY and let $P \equiv (x', y')$ with respect to axes OX' and OY' where $\angle X' OX = \angle YOY' = \theta$ Then $x = x' \cos \theta - y' \sin \theta$ $y = x' \sin \theta + y' \cos \theta$ and $x' = x \cos \theta + y \sin \theta$ $y' = -x \sin \theta + y \cos \theta$

The above relation between (x, y) and (x', y') can be easily obtained with the help of following table

	$x \downarrow$	$y\downarrow$
$x' \rightarrow$	$\cos \theta$	$\sin \theta$
$y' \rightarrow$	$-\sin\theta$	$\cos heta$

(3) **Change of origin and rotation of axes:** If origin is changed to $O'(\alpha, \beta)$ and axes are rotated about the new origin O' by an angle θ in the anticlock-

wise sense such that the new co-ordinates of P(x,y) become (x',y') then the equations of transformation will be $x = \alpha + x' \cos \theta - y' \sin \theta$ and $y = \beta + x' \sin \theta + y' \cos \theta$

(4)**Reflection (Image of a point):** Let (x, y) be any point, then its image with respect to

(i) x axis \Rightarrow (x,-y) (ii) y-axis \Rightarrow (-x,y) (iii) origin \Rightarrow (-x,-y) (iv) line $y = x \Rightarrow$ (y,x)