Transformation of Axes.

(1) Shifting of origin without rotation of axes: Let $P \equiv(x, y)$ with respect to axes OX and OY.

Let $O^{\prime} \equiv(\alpha, \beta)$ with respect to axes OX and OY and let $P \equiv\left(x^{\prime}, y^{\prime}\right)$ with respect to axes $O^{\prime} X^{\prime}$ and $O^{\prime} Y^{\prime}$, where $O X$ and $O^{\prime} X^{\prime}$ are parallel and $O Y$ and $O^{\prime} Y^{\prime}$ are parallel.
Then $x=x^{\prime}+\alpha, y=y^{\prime}+\beta$ or $x^{\prime}=x-\alpha, y^{\prime}=y-\beta$
Thus if origin is shifted to point (α, β) without rotation of axes, then new equation of curve can be obtained by putting $x+\alpha$ in place of x and $y+\beta$ in place of y.

(2)Rotation of axes without changing the origin:Let O be the origin. Let $P \equiv(x, y)$ with respect to axes OX and OY and let $P \equiv\left(x^{\prime}, y^{\prime}\right)$ with respect to axes OX' and $O Y^{\prime}$ where $\angle X^{\prime} O X=\angle Y O Y^{\prime}=\theta$
Then $\quad x=x^{\prime} \cos \theta-y^{\prime} \sin \theta$
$y=x^{\prime} \sin \theta+y^{\prime} \cos \theta$
and $\quad x^{\prime}=x \cos \theta+y \sin \theta$
$y^{\prime}=-x \sin \theta+y \cos \theta$

The above relation between (x, y) and $\left(x^{\prime}, y^{\prime}\right)$ can be easily obtained with the help of following table

	$x \downarrow$	$y \downarrow$
$x^{\prime} \rightarrow$	$\cos \theta$	$\sin \theta$
$y^{\prime} \rightarrow$	$-\sin \theta$	$\cos \theta$

(3) Change of origin and rotation of axes: If origin is changed to $O^{\prime}(\alpha, \beta)$ and axes are rotated about the new origin O^{\prime} by an angle θ in the anticlock-

wise sense such that the new co-ordinates of $P(x, y)$ become $\left(x^{\prime}, y^{\prime}\right)$ then the equations of transformation will be $x=\alpha+x^{\prime} \cos \theta-y^{\prime} \sin \theta$ and $y=\beta+x^{\prime} \sin \theta+y^{\prime} \cos \theta$
(4)Reflection (Image of a point): Let (x, y) be any point, then its image with respect to
(i) x axis $\Rightarrow(x,-y)$
(ii) y-axis $\Rightarrow(-x, y)$
(iii) origin $\Rightarrow(-x,-y)$
(iv) line $y=x \Rightarrow(y, x)$

