Length of Perpendicular.

(1)Distance of a point from a line: The length p of the perpendicular from the point $\left(x_{1}, y_{1}\right)$ to the line $a x+b y+c=0$ is given by $p=\frac{\left|a x_{1}+b y_{1}+c\right|}{\sqrt{a^{2}+b^{2}}}$.

Note: Length of perpendicular from origin to the line $a x+b y+c=0$ is $\frac{c}{\sqrt{a^{2}+b^{2}}}$.
Length of perpendicular from the point $\left(x_{1}, y_{1}\right)$ to the line $x \cos \alpha+y \sin \alpha=p$ is $x_{1} \cos \alpha+y_{1} \sin \alpha-p$
(2)Distance between two parallel lines: Let the two parallel lines be $a x+b y+c_{1}=0$ and $a x+b y+c_{2}=0$.

First Method: The distance between the lines is $d=\frac{\left|c_{1}-c_{2}\right|}{\sqrt{\left(a^{2}+b^{2}\right)}}$.

Second Method: The distance between the lines is $d=\frac{\lambda}{\sqrt{\left(a^{2}+b^{2}\right)}}$, where
(i) $\lambda \neq c_{1}-c_{2} \mid$ if they be on the same side of origin.
(ii) $\lambda \neq c_{1}\left|+\left|c_{2}\right|\right.$ if the origin O lies between them.

$$
\begin{array}{r}
a x+b y+c_{2}=0 \\
. O(0,0)
\end{array}
$$

Third method: Find the coordinates of any point on one of the given line, preferably putting $x=0$ or $y=0$. Then the perpendicular distance of this point from the other line
$a x+b y+c_{1}=0$

Note:: Distance between two parallel lines $a x+b y+c_{1}=0$ and $k a x+k b y+c_{2}=0$ is $\frac{\left|c_{1}-\frac{c_{2}}{k}\right|}{\sqrt{a^{2}+b^{2}}}$
Distance between two non-parallel lines is always zero.

