Length of Perpendicular.

(1)**Distance of a point from a line:** The length p of the perpendicular from the point (x_1, y_1) to the line ax + by + c = 0 is given by $p = \frac{|ax_1 + by_1 + c|}{\sqrt{a^2 + b^2}}$.

Note: Length of perpendicular from origin to the line ax + by + c = 0 is $\frac{c}{\sqrt{a^2 + b^2}}$.

Length of perpendicular from the point (x_1, y_1) to the line $x \cos \alpha + y \sin \alpha = p$ is $x_1 \cos \alpha + y_1 \sin \alpha - p$

(2)**Distance between two parallel lines:** Let the two parallel lines be $ax + by + c_1 = 0$ and $ax + by + c_2 = 0$.

First Method: The distance between the lines is $d = \frac{|c_1 - c_2|}{\sqrt{a^2 + b^2}}$.

Second Method: The distance between the lines is $d = \frac{\lambda}{\sqrt{a^2 + b^2}}$, where

- (i) $\lambda \neq c_1 c_2$ | if they be on the same side of origin.
- (ii) $\lambda = c_1 |+| c_2 |$ if the origin O lies between them.

Third method: Find the coordinates of any point on one of the given line, preferably putting x = 0 or y = 0. Then the perpendicular distance of this point from the other line is the required distance between the lines.

$ax + by + c_1 = 0$	
. <i>O</i> (0, 0)	
$ax + by + c_2 = 0$	

Note:: Distance between two parallel lines $ax + by + c_1 = 0$ and $kax + kby + c_2 = 0$ is $\frac{\left|c_1 - \frac{c_2}{k}\right|}{\sqrt{a^2 + b^2}}$

Distance between two non-parallel lines is always zero.