Image of a Point in Different Cases

(1) The image of a point with respect to the line mirror The image of A($\mathrm{x} 1, \mathrm{y} 1$)
with respect to the line mirror

$$
a x+b y+c=0
$$

be
$B(h, k)$
is given by,

$$
h-x_{1} a=k-y_{1} b=-2\left(a_{1}+b y_{1}+c\right) a_{2}+b_{2}
$$

(2) The image of a point with respect to x-axis : Let

$$
\mathrm{P}(\mathrm{x}, \mathrm{y})
$$

be any point and

$$
\mathrm{P}^{\prime}\left(\mathrm{x}^{\prime}, \mathrm{y}^{\prime}\right)
$$

its image after reflection in the x-axis, then

$$
x^{\prime}=x
$$

$$
y^{\prime}=-\mathrm{y}
$$

(
\because
O^{\prime}
is the mid point of P and

$$
\mathrm{P}^{\prime}
$$

)

(3) The image of a point with respect to y-axis : Let

$$
\mathrm{P}(\mathrm{x}, \mathrm{y})
$$

be any point and

$$
\mathrm{P}^{\prime}\left(\mathrm{x}^{\prime}, \mathrm{y}^{\prime}\right)
$$

its image after reflection in the y-axis, then

$$
x^{\prime}=-x
$$

$y^{\prime}=y$
, (

$$
\because
$$

O^{\prime}
is the mid point of P and P'
)

(4) The image of a point with respect to the origin : Let

$$
\mathrm{P}(\mathrm{x}, \mathrm{y})
$$

be any point and

$$
\mathrm{P}^{\prime}\left(\mathrm{x}^{\prime}, \mathrm{y}^{\prime}\right)
$$

be its image after reflection through the origin, then

$$
\mathrm{X}^{\prime}=-\mathrm{X}
$$

$$
y^{\prime}=-y
$$

,(
\because

O
is the mid point of P,
P'
).

(5) The image of a point with respect to the line

$$
\mathrm{y}=\mathrm{x}
$$

: Let

$$
\mathrm{P}(\mathrm{x}, \mathrm{y})
$$

be any point and

$$
\mathrm{P}^{\prime}\left(\mathrm{x}^{\prime}, \mathrm{y}^{\prime}\right)
$$

be its image after reflection in the line

$$
y=x
$$

, then

$$
\mathrm{x}^{\prime}=\mathrm{y}
$$

$$
y^{\prime}=x
$$

, (
\because
O^{\prime}
is the mid point of P and
P^{\prime}
).

(6) The image of a point with respect to the line
$y=x \tan \theta$
: Let
P(x,y)
be any point and

$$
\mathrm{P}^{\prime}\left(\mathrm{X}^{\prime}, \mathrm{y}^{\prime}\right)
$$

be its image after reflection in the line $y=x \tan \theta$
, then

$$
\mathrm{x}=\mathrm{x} \cos 2 \theta+\mathrm{y} \sin 2 \theta
$$

$$
y^{\prime}=x \sin 2 \theta-y \cos 2 \theta
$$

, (
O^{\prime}
is the mid point of P and)

