Position of two points with respect to a given line

Let the line be $a x+$ by $+c=0$ and $P\left(x_{1}, y_{1}\right), Q\left(x_{2}, y_{2}\right)$ be two points.

Case 1:

If $P\left(x_{1}, y_{1}\right)$ and $Q\left(x_{2}, y_{2}\right)$ are on the opposite sides of the line $a x+b y+c=0$, then the point R on the line $a x+b y+c=0$ divides the line PQ internally in the ratio $m_{1}: m_{2}$, where m_{1} / m_{2} must be positive.
Co-ordinates of R
are ($\left.m_{1} x_{2}+m_{2} x_{1} / m_{1}+m_{2}, m_{1} y_{2}+m_{2} y_{1} / m_{1}+m_{2}\right)$.
Point R lies on the line $a x+b y+c=0$.
$\Rightarrow \mathrm{m}_{1} / \mathrm{m}_{2}=a \mathrm{x}_{1}+\mathrm{by}_{1}+\mathrm{c} / \mathrm{ax}_{2}+\mathrm{by}_{2}+\mathrm{c}>0$

So that $a x_{1}+b y_{1}+c$ and $a x_{2}+b y_{2}+c$ should have opposite signs.

Case 2:

If $a x_{1}+b y_{1}+c$ and $a x_{2}+b y_{2}+c$ have the same signs then $m_{1} / m_{2}=-v e$, so that the point R on the line $a x+b y+c=0$ will divide the line $P Q$ externally in the ratio $m_{1}: m_{2}$ and the points $P\left(x_{1}, y_{1}\right)$ and $Q\left(x_{2}, y_{2}\right)$ are on the same side of the line $a x+b y+c=0$.

Illustration:

Find the range of θ in the interval $(0, \pi)$ such that the points $(3,5)$ and $(\sin \theta, \cos \theta)$ lie on the same side of the line $x+y-1=0$.

Solution:

$3+5-1=7>0 \Rightarrow \sin \theta+\cos \theta-1>0$
$\Rightarrow \sin (п / 4+\theta)>1 / \sqrt{ } 2$
$\Rightarrow п / 4<\pi / 4+\theta<3 п / 4$
$\Rightarrow 0<\theta<\pi / 2$.

Illustration:

Find a, if $\left(a, a^{2}\right)$ lies inside the triangle having sides along the lines
$2 x+3 y=1, x+2 y-3=0,6 y=5 x-1$.

Solution:

Let A, B, C be vertices of the triangle.
$A \equiv(-7,5), B \equiv(5 / 4,7 / 8)$,
$C \equiv(1 / 3,1 / 9)$.
Sign of A w.r.t. BC is -ve.

If p lies in-side the $\mid A B C$, then sign of P will be the same as sign of a w.r.t. the line $B C$ $\Rightarrow \quad 5 a-6 a^{2}-1<0$.
Similarly $2 a+3 a^{2}-1>0$.
And, $\quad a+2 a^{2}-3<0$.
Solving, (1), (2) and (3) for a and then taking intersection,
We get a ? $\quad(1 / 2, \quad 1) \quad \cup \quad-1)$.

Illustration:

The equations of the perpendicular bisectors of the sides $A B$ and $A C$ of a triangle $A B C$ are respectively $x-y+5=0$ and $x+2 y=0$. If the co-ordinates of A are $(1,-2)$, find the equation of BC.

Solution:

From the figure,
$E \equiv\left(x_{1}+1 / 2, y_{1}-2 / 2\right)$,
$F \equiv\left(x_{2}+1 / 2, y_{2}-2 / 2\right)$.
$B\left(x_{1}, y_{1}\right)$

Alt text : Equations of the perpendicular bisectors of sides of triangle

Since E and F lie on $O E$ and $O F$ respectively,
$\mathrm{x}_{1}-\mathrm{y}_{1}+13=0$
and $x_{2}+2 y_{2}-3=0$
Also, slope of $A B=-1$ and slope of $A C$ is 2 , so that
$\mathrm{x}_{1}+\mathrm{y}_{1}+1=0$.
And $2 x_{2}-y_{2}-4=0$
Solving these equations, we get the co-ordinates of B and C as
$B \equiv(-7,6)$ and $C \equiv(11 / 5,2 / 5)$
\Rightarrow Equation of $B C$ is $14 x+23 y-40=0$.

Illustration:

Two fixed points A and B are taken on the co-ordinate axes such that $O A=a$ and $O B=b$. Two variable points A^{\prime} and B^{\prime} are taken on the same axes such that $O A^{\prime}+O B^{\prime}=O A+O B$. Find the locus of the point of intersection of $A B^{\prime}$ and $A^{\prime} B$.

Solution:

Let $A \equiv(a, 0), B(0, b), A^{\prime} \equiv\left(a^{\prime}, 0\right), B^{\prime} \equiv\left(0, b^{\prime}\right)$.
Equation of $A^{\prime} B$ is $x / a^{\prime}+y / b^{\prime}=1$.
and equation of $A B^{\prime}$ is $x / a+y / b^{\prime}=1$.
Subtracting (1) from (2), we get, $x\left(1 / a-1 / a^{\prime}\right)+y\left(1 / b^{\prime}-1 / b\right)=0$.
$\Rightarrow x\left(a^{\prime}-a\right) / a a^{\prime}+y\left(b-b^{\prime}\right) / b b^{\prime}=0 . \quad\left[U s i n g a^{\prime}-a=b-b^{\prime}\right]$
$\Rightarrow x / a\left(b-b^{\prime}+a\right)+y / b b^{\prime}, 0 \Rightarrow b^{\prime}=a(a+b) y / a y-b x$.
From (2) $b^{\prime} x+a y=(4)$ we get $x+y=a+b$
which is the required locus.

