Equations of Straight line in Different forms.

(1)Slope form:Equation of a line through the origin and having slope m is $y=m x$.
(2) One point form or Point slope form:Equation of a line through the point $\left(x_{1}, y_{1}\right)$ and having slope m is $y-y_{1}=m\left(x-x_{1}\right)$.
(3) Slope intercept form:Equation of a line (non-vertical) with slope m and
 cutting off an intercept c on the y-axis is $y=m x+c$.
The equation of a line with slope m and the x -intercept d is $y=m(x-d)$
(4) Intercept form:If a straight line cuts x-axis at A and the y-axis at B then $O A$ and $O B$ are known as the intercepts of the line on x-axis and y-axis respectively.

The intercepts are positive or negative according as the line meets with positive or negative directions of the coordinate axes.
In the figure, $O A=x$-intercept, $O B=y$-intercept.
Equation of a straight line cutting off intercepts a and b on x -axis and y -axis respectively is $\frac{x}{a}+\frac{y}{b}=1$.

Note: If given line is parallel to X axis, then X -intercept is undefined.
\square If given line is parallel to Y axis, then Y-intercept is undefined.
(5)Two point form: Equation of the line through the points $\mathrm{A}\left(x_{1}, y_{1}\right)$ and $B\left(x_{2}, y_{2}\right)$ is
$\left(y-y_{1}\right)=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}\left(x-x_{1}\right)$. In the determinant form it is gives as:
$\left|\begin{array}{ccc}x & y & 1 \\ x_{1} & y_{1} & 1 \\ x_{2} & y_{2} & 1\end{array}\right|=0$ is the equation of line.

(6) Normal or perpendicular form:The equation of the straight line upon which the length of the perpendicular from the origin is p and this perpendicular makes an angle α with x -axis is $x \cos \alpha+y \sin \alpha=p$.

(7)Symmetrical or parametric or distance form of the line:Equation of a line passing through $\left(x_{1}, y_{1}\right)$ and making an angle θ with the positive direction of x -axis is $\frac{x-x_{1}}{\cos \theta}=\frac{y-y_{1}}{\sin \theta}=r$,
Where r is the distance between the point $\mathrm{P}(\mathrm{x}, \mathrm{y})$ and $A\left(x_{1}, y_{1}\right)$.
The coordinates of any point on this line may be taken as $\left(x_{1}+r \cos \theta, y_{1}+r \sin \theta\right)$, known as parametric co-ordinates, ' r ' is called the parameter.

Note: Equation of x-axis $\Rightarrow y=0$

Equation a line parallel to x -axis (or perpendicular to y -axis) at a distance ' b^{\prime} from it $\Rightarrow y=b$

Equation of y-axis $\Rightarrow x=0$
Equation of a line parallel to y -axis (or perpendicular to x -axis) at a distance 'a' from it $\Rightarrow x=a$

