Angle between Two non-parallel Lines.

Let θ be the angle between the lines $y=m_1x+c_1$ and $y=m_2x+c_2$ and intersecting at A.

Where, $m_1 = \tan \alpha$ and $m_2 = \tan \beta$

$$\therefore \quad \alpha = \theta + \beta \Rightarrow \theta = \alpha - \beta$$

$$\Rightarrow \tan \theta = \left| \frac{\tan \alpha - \tan \beta}{1 + \tan \alpha \tan \beta} \right|$$

$$\therefore \quad \theta = \tan^{-1} \left| \frac{m_1 - m_2}{1 + m_1 m_2} \right|.$$

(1)**Angle between two straight lines when their equations are given:** The angle θ between the lines $a_1x + b_1y + c_1 = 0$ and $a_2x + b_2y + c_2 = 0$ is given by, $\tan \theta = \left|\frac{a_2b_1 - a_1b_2}{a_1a_2 + b_1b_2}\right|$.

(i) **Condition for the lines to be parallel:**If the lines $a_1x + b_1y + c_1 = 0$ and $a_2x + b_2y + c_2 = 0$ are parallel then, $m_1 = m_2 \Rightarrow \frac{a_1}{b_1} = \frac{a_2}{b_2} \Rightarrow \frac{a_1}{a_2} = \frac{b_1}{b_2}$.

(ii) Condition for the lines to be perpendicular: If the lines $a_1x + b_1y + c_1 = 0$ and $a_2x + b_2y + c_2 = 0$ are perpendicular then, $m_1m_2 = -1 \Rightarrow \frac{a_1}{b_1} \times \frac{a_2}{b_2} = -1 \Rightarrow a_1a_2 + b_1b_2 = 0$.

(iii) Conditions for two lines to be coincident, parallel, perpendicular and intersecting:Two lines $a_1x + b_1y + c_1 = 0$ and $a_2x + b_2y + c_2 = 0$ are,

(a) Coincident, if
$$\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$$

(b) Parallel, if
$$\frac{a_1}{a_2} = \frac{b_1}{b_2} \neq \frac{c_1}{c_2}$$

- (c) Intersecting, if $\frac{a_1}{a_2} \neq \frac{b_1}{b_2}$
- (d) Perpendicular, if $a_1a_2 + b_1b_2 = 0$