Equations of Normal in Different forms.

(1) Point form: The equation of the normal at $\left(x_{1}, y_{1}\right)$ to the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ is $\frac{a^{2} x}{x_{1}}-\frac{b^{2} y}{y_{1}}=a^{2}-b^{2}$.

(2) Parametric form: The equation of the normal to the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ at $(a \cos \phi, b \sin \phi)$ is $a x \sec \phi-b y \operatorname{cosec} \phi=a^{2}-b^{2}$.
(3) Slope form: If m is the slope of the normal to the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$, then the equation of normal is
$y=m x \pm \frac{m\left(a^{2}-b^{2}\right)}{\sqrt{a^{2}+b^{2} m^{2}}}$
The coordinates of the point of contact are $\left(\frac{ \pm a^{2}}{\sqrt{a^{2}+b^{2} m^{2}}}, \frac{ \pm m b^{2}}{\sqrt{a^{2}+b^{2} m^{2}}}\right)$

Note: If $y=m x+c$ is the normal of $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$, then condition of normality is $c^{2}=\frac{m^{2}\left(a^{2}-b^{2}\right)^{2}}{\left(a^{2}+b^{2} m^{2}\right)}$.
The straight line $l x+m y+n=0$ is a normal to the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$, if $\frac{a^{2}}{l^{2}}+\frac{b^{2}}{m^{2}}=\left(\frac{a^{2}-b^{2}}{n^{2}}\right)^{2}$.
Four normals can be drawn from a point to an ellipse.

Important Tips

- If S be the focus and G be the point where the normal at P meets the axis of an ellipse, then $S G=e . S P$, and the tangent and normal at P bisect the external and internal angles between the focal distances of P.

- Any point P of an ellipse is joined to the extremities of the major axis then the portion of a directrix intercepted by them subtends a right angle at the corresponding focus.
With a given point and line as focus and directrix, a series of ellipse can be described. The locus of the extremities of their minor axis is a parabola.
- The equations to the normals at the end of the latera recta and that each passes through an end of the minor axis, if $e^{4}+e^{2}+1=0$
σ If two concentric ellipse be such that the foci of one be on the other and if e and e' be their
$\underline{\text { eccentricities. Then the angle between their axes is } \cos ^{-1} \sqrt{\frac{e^{2}+e^{\prime 2}-1}{e e^{\prime}}} \text {. }}$

