Properties of Eccentric angles of the Co-normal points.

(1) The sum of the eccentric angles of the co-normal points on the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ is equal to odd

multiple of π .

(2) If α, β, γ are the eccentric angles of three points on the ellipse, the normals at which are concurrent, then $\sin(\alpha + \beta) + \sin(\beta + \gamma) + \sin(\gamma + \alpha) = 0$.

(3)**Co-normal points lie on a fixed curve:** Let $P(x_1, y_1)$, $Q(x_2, y_2)$, $R(x_3, y_3)$ and $S(x_4, y_4)$ be co-normal points, then PQRS lie on the curve $(a^2 - b^2)xy + b^2kx - a^2hy =$ This curve is called Apollonian rectangular hyperbola.

Note: The feet of the normals from any fixed point to the ellipse lie at the intersections of the apollonian rectangular hyperbola with the ellipse.

Important Tips

- The area of the triangle formed by the three points, on the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, whose eccentric angles are θ, ϕ and ψ is $2ab \sin\left(\frac{\phi-\psi}{2}\right) \sin\left(\frac{\psi-\theta}{2}\right) \sin\left(\frac{\theta-\phi}{2}\right)$.
- The eccentricity of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ is given by $2 \cot w = \frac{e^2 \sin 2\theta}{\sqrt{(1-e^2)}}$, where w is one of the

angles between the normals at the points whose eccentric angles are θ and $\frac{\pi}{2} + \theta$.