Properties of Eccentric angles of the Co-normal points.

(1) The sum of the eccentric angles of the co-normal points on the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ is equal to odd multiple of π.
(2) If α, β, γ are the eccentric angles of three points on the ellipse, the normals at which are concurrent, then $\sin (\alpha+\beta)+\sin (\beta+\gamma)+\sin (\gamma+\alpha)=0$.
(3)Co-normal points lie on a fixed curve: Let $P\left(x_{1}, y_{1}\right), Q\left(x_{2}, y_{2}\right), R\left(x_{3}, y_{3}\right)$ and $S\left(x_{4}, y_{4}\right)$ be co-normal points, then PQRS lie on the curve $\quad\left(a^{2}-b^{2}\right) x y+b^{2} k x-a^{2} h y=$ This curve is called Apollonian rectangular hyperbola.

Note: The feet of the normals from any fixed point to the ellipse lie at the intersections of the apollonian rectangular hyperbola with the ellipse.

Important Tips

- The area of the triangle formed by the three points, on the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$, whose eccentric angles are θ, ϕ and ψ is $2 a b \sin \left(\frac{\phi-\psi}{2}\right) \sin \left(\frac{\psi-\theta}{2}\right) \sin \left(\frac{\theta-\phi}{2}\right)$.
The eccentricity of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ is given by $2 \cot w=\frac{e^{2} \sin 2 \theta}{\sqrt{\left(1-e^{2}\right)}}$, where w is one of the angles between the normals at the points whose eccentric angles are θ and $\frac{\pi}{2}+\theta$.

