Equation of the Chord joining two points on an Ellipse.

Let $P(a \cos \theta, b \sin \theta) ; Q(a \cos \phi, b \sin \phi)$ be any two points of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$. Then, the equation of the chord joining these two points is $y-b \sin \theta=\frac{b \sin \phi-b \sin \theta}{a \cos \phi-a \cos \theta}(x-a \cos \theta)$ Thus, the equation of the chord joining two points having eccentric angles θ and ϕ on the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ is $\frac{x}{a} \cos \left(\frac{\theta+\phi}{2}\right)+\frac{y}{b} \sin \left(\frac{\theta+\phi}{2}\right)=\cos \left(\frac{\theta-\phi}{2}\right)$

Note: If the chord joining two points whose eccentric angles are α and β cut the major axis of an ellipse at a distance 'c' from the center, then $\tan \frac{\alpha}{2} \tan \frac{\beta}{2}=\frac{c-a}{c+a}$.
If α and β be the eccentric angles of the extremities of a focal chord of an ellipse of eccentricity e, then $\tan \frac{\alpha}{2} \tan \frac{\beta}{2}+\frac{1 \mp e}{1 \pm e}=0$.

