Equation of the Chord joining two points on an Ellipse.

Let $P(a\cos\theta, b\sin\theta)$; $Q(a\cos\phi, b\sin\phi)$ be any two points of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$. Then, the equation of the chord joining these two points is $y - b\sin\theta = \frac{b\sin\phi - b\sin\theta}{a\cos\phi - a\cos\theta}(x - a\cos\theta)$ Thus, the equation of the chord joining two points having eccentric angles θ and ϕ on the

ellipse
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$
 is $\frac{x}{a}\cos\left(\frac{\theta+\phi}{2}\right) + \frac{y}{b}\sin\left(\frac{\theta+\phi}{2}\right) = \cos\left(\frac{\theta-\phi}{2}\right)$

Note: If the chord joining two points whose eccentric angles are α and β cut the major axis of an ellipse at a distance 'c' from the center, then $\tan \frac{\alpha}{2} \tan \frac{\beta}{2} = \frac{c-a}{c+a}$.

If α and β be the eccentric angles of the extremities of a focal chord of an ellipse of eccentricity e, then $\tan \frac{\alpha}{2} \tan \frac{\beta}{2} + \frac{1 \mp e}{1 \pm e} = 0$.