Concyclic points.

Any circle intersects an ellipse in two or four points. They are called concyclic points and the sum of their eccentric angles is an even multiple of π

If $\alpha, \beta \cdot \gamma, \delta$ be the eccentric angles of the four concyclic points on an ellipse, then $\alpha+\beta+\gamma+\delta=2 n \pi$, where n is any integer.

Note: The common chords of a circle and an ellipse are equally inclined to the axes of the ellipse.

Important Tips

The centre of a circle $x^{2}+y^{2}+2 g x+2 f y+c=0$ passing through the three points, on an ellipse
$\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ (whose eccentric angles are $\left.a, \beta, \gamma\right)$ is $-g=\left(\frac{a^{2}-b^{2}}{4 a}\right)\{\cos \alpha+\cos \beta+\cos \gamma+\cos (\alpha+\beta+\gamma)\}$ and
$-f=\left(\frac{b^{2}-a^{2}}{4 a}\right)\{\sin \alpha+\sin \beta+\sin \gamma-\sin (\alpha+\beta+\gamma)\}$

- $P^{\prime} C P$ and $D^{\prime} C D$ are conjugate diameters of an ellipse and α is the eccentric angles of P . Then the eccentric angles of the point where the circle through P, P^{\prime}, D again cuts the ellipse is $\pi / 2-3 \alpha$.

