Definition

An ellipse is the locus of a point which moves in such a way that its distance from a fixed point is in constant ratio (<1) to its distance from a fixed line. The fixed point is called the focus and fixed line is called the directrix and the constant ratio is called the eccentricity of the ellipse, denoted by (e).
In other words, we can say an ellipse is the locus of a point which moves in a plane so that the sum of its distances from two fixed points is constant and is more than the distance between the two fixed points.
Let $S(\alpha, \beta)$ is the focus, $Z Z^{\prime}$ is the directrix and P is any point on the ellipse. Then by definition,
$\frac{S P}{P M}=e \Rightarrow S P=e . P M$
$\sqrt{(x-\alpha)^{2}+(y-\beta)^{2}}=e \frac{A x+B y+C}{\sqrt{A^{2}+B^{2}}}$
Squaring both sides, $\left(A^{2}+B^{2}\right)\left[(x-\alpha)^{2}+(y-\beta)^{2}\right]=e^{2}(A x+B y+C)^{2}$

Note: The condition for second degree equation in x and y to represent an ellipse is that $h^{2}-a b<0$ and $\Delta=a b c+2 f g h-a f^{2}-b g^{2}-c h^{2} \neq 0$

