Equation of Ellipse in other form.

In the equation of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, if a > b or $a^2 > b^2$ (denominator of x^2 is greater than that of y^2), then the major and minor axis lie along x-axis and y-axis respectively. But if a < b or $a^2 < b^2$ (denominator of x^2 is less than that of y^2), then the major axis of the ellipse lies along the y-axis and is of length 2b and the minor axis along the x-axis and is of length 2a.

The coordinates of foci S and S' are (0, be) and (0, – be) respectively.

The equation of the directrices ZK and Z'K' are $y = \pm b/e$ and eccentricity e is

given by the formula $a^2 = b^2(1 - e^2)$ or $e = \sqrt{1 - \frac{a^2}{b^2}}$

Ellipse	$\left\{\frac{x^2}{a^2}+\frac{y^2}{b^2}=1\right\}$	
Basic fundamentals		
	For a > b	For b > a
Centre	(0, 0)	(0, 0)
Vertices	$(\pm a, 0)$	$(0,\pm b)$
Length of major axis	2a	2b
Length of minor axis	2b	2a
Foci	$(\pm ae, 0)$	$(0,\pm be)$
Equation of directrices	$x = \pm a / e$	$y = \pm b / e$
Relation in a, b and e	$b^2 = a^2(1-e^2)$	$a^2 = b^2(1 - e^2)$
Length of latus rectum	$\frac{2b^2}{a}$	$\frac{2a^2}{b}$
Ends of latus-rectum	$\left(\pm ae,\pm\frac{b^2}{a}\right)$	$\left(\pm \frac{a^2}{b},\pm be\right)$
Parametric equations	$(a\cos\phi,b\sin\phi)$	$(a\cos\phi, b\sin\phi) \ (0 \le \phi < 2\pi)$
Focal radii	$SP = a - ex_1$ and $S'P = a + ex_1$	$SP = b - ey_1$ and $S'P = b + ey_1$
Sum of focal radii	2a	2b
SP + S'P =		
Distance between foci	2ae	2be
Distance between	2a/e	2b/e

Difference between both ellipse will be clear from the following table.

directrices		
Tangents at the vertices	x = -a, x = a	y = b, y = -b