Equation of Ellipse in other form.

In the equation of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$, if $a>b$ or $a^{2}>b^{2}$ (denominator of x^{2} is greater than that of y^{2}), then the major and minor axis lie along x-axis and y axis respectively. But if $a<b$ or $a^{2}<b^{2}$ (denominator of x^{2} is less than that of y^{2}), then the major axis of the ellipse lies along the y-axis and is of length $2 b$ and the minor axis along the x-axis and is of length $2 a$.
The coordinates of foci S and S^{\prime} are $(0, b e)$ and $(0,-b e)$ respectively.
The equation of the directrices $Z K$ and $Z^{\prime} K^{\prime}$ are $y= \pm b / e$ and eccentricity e is given by the formula $a^{2}=b^{2}\left(1-e^{2}\right)$ or $e=\sqrt{1-\frac{a^{2}}{b^{2}}}$

Difference between both ellipse will be clear from the following table.

Basic fundamentals

	For $\mathbf{a}>\mathbf{b}$	For b $>\mathbf{a}$
Centre	$(0,0)$	$(0,0)$
Vertices	$(\pm a, 0)$	$(0, \pm b)$
Length of major axis	2 a	2 b
Length of minor axis	2 b	2 a
Foci	$(\pm a e, 0)$	$(0, \pm b e)$
Equation of directrices	$x= \pm a / e$	$y= \pm b / e$
Relation in a, b and e	$b^{2}=a^{2}\left(1-e^{2}\right)$	$a^{2}=b^{2}\left(1-e^{2}\right)$
Length of latus rectum	$\frac{2 b^{2}}{a}$	$\frac{2 a^{2}}{b}$
Ends of latus-rectum	$\left(\pm a e, \pm \frac{b^{2}}{a}\right)$	$\left(\pm \frac{a^{2}}{b}, \pm b e\right)$
Parametric equations	$(a \cos \phi, b \sin \phi)$	$(a \cos \phi, b \sin \phi)(0 \leq \phi<2 \pi)$
Focal radii	$S P=a-e x_{1}$ and $S^{\prime} P=a+e x_{1}$	$S P=b-e y_{1}$ and $S^{\prime} P=b+e y_{1}$
Sum of focal radii	2 a	2 b
$S P+S^{\prime} P=$	2 ae	2 be
Distance between foci	$2 \mathrm{a} / \mathrm{e}$	$2 \mathrm{~b} / \mathrm{e}$
Distance between		

directrices		
Tangents at the vertices	$x=-a, x=a$	$y=b, y=-b$

