Intersection of a Line and an Ellipse.

Let the ellipse be $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$(i) and the given line be $y=m x+c$

Eliminating y from equation (i) and (ii), then $\frac{x^{2}}{a^{2}}+\frac{(m x+c)^{2}}{b^{2}}=1$
i.e., $\left(a^{2} m^{2}+b^{2}\right) x^{2}+2 m c a^{2} x+a^{2}\left(c^{2}-b^{2}\right)=0$

The above equation being a quadratic in x , its discriminant $=4 m^{2} c^{2} a^{4}-4 a^{2}\left(a^{2} m^{2}+b^{2}\right)\left(c^{2}-b^{2}\right)$ $=b^{2}\left\{\left(a^{2} m^{2}+b^{2}\right)-c^{2}\right\}$

Hence the line intersects the ellipse in two distinct points if $a^{2} m^{2}+b^{2}>c^{2}$ in one point if $c^{2}=a^{2} m^{2}+b^{2}$ and does not intersect if $a^{2} m^{2}+b^{2}<c^{2}$.

