
Equations of Tangent in Different forms. 
 

(1) Point form: The equation of the tangent to the ellipse 1
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(2) Slope form: If the line cmxy  touches the ellipse 1
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Hence, the straight line 222 bmamxy  always represents the tangents to the ellipse. 

Points of contact: Line 222 bmamxy   touches the ellipse 1
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(3) Parametric form: The equation of tangent at any point )sin,cos(  ba  is  
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Note: The straight line 0 nmylx touches the ellipse 1
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The line pyx   sincos touches the ellipse 1
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Two tangents can be drawn from a point to an ellipse. The two tangents are real and distinct or coincident 
or imaginary according as the given point lies outside, on or inside the ellipse. 
The tangents at the extremities of latus-rectum of an ellipse intersect on the corresponding directrix. 
 
 
 
 
 
 



 
 
Important Tips 
 

 A circle of radius r is concentric with the ellipse 1
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 The locus of the foot of the perpendicular drawn from centre upon any tangent to the ellipse 
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 The locus of the mid points of the portion of the tangents to the ellipse 1
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 The product of the perpendiculars from the foci to any tangent of an ellipse is equal to the 
square of the semi minor axis, and the feet of these perpendiculars lie on the auxiliary circle. 
 


