Equation of Pair of Tangents $\mathrm{SS}_{1}=\mathrm{T}^{2}$.

Pair of tangents: Let $P\left(x_{1}, y_{1}\right)$ be any point lying outside the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ and let a pair of tangents PA, PB can be drawn to it from P .
Then the equation of pair of tangents PA and PB is $S S_{1}=T^{2}$
where $S \equiv \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}-1=0$

$S_{1} \equiv \frac{x_{1}^{2}}{a^{2}}+\frac{y_{1}^{2}}{b^{2}}-1=0$
$T \equiv \frac{x x_{1}}{a^{2}}+\frac{y y_{1}}{b^{2}}-1=0$

Director circle: The director circle is the locus of points from which perpendicular tangents are drawn to the ellipse.
Let $P\left(x_{1}, y_{1}\right)$ be any point on the locus. Equation of tangents through $P\left(x_{1}, y_{1}\right)$ is given by $S S_{1}=T^{2}$
i.e., $\left(\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}-1\right)\left(\frac{x_{1}^{2}}{a^{2}}+\frac{y_{1}^{2}}{b^{2}}-1\right)=\left[\frac{x x_{1}}{a^{2}}+\frac{y y_{1}}{b^{2}}-1\right]^{2}$

They are perpendicular, Socoeff. of $x^{2}+$ coeff. of $y^{2}=0$
$\therefore\left(\frac{1}{a^{2}}+\frac{1}{b^{2}}\right)\left(\frac{x_{1}^{2}}{a^{2}}+\frac{y_{1}^{2}}{b^{2}}-1\right)-\left(\frac{x_{1}^{2}}{a^{4}}+\frac{y_{1}^{2}}{b^{4}}\right)=0$ or $x_{1}^{2}+y_{1}^{2}=a^{2}+b^{2}$

Hence locus of $P\left(x_{1}, y_{1}\right)$ i.e., equation of director circle is $x^{2}+y^{2}=a^{2}+b^{2}$

