Pole and Polar.

Let P be any point inside or outside the hyperbola. If any straight line drawn through P interesects the hyperbola at A and B. Then the locus of the point of intersection of the tangents to the hyperbola at A and B is called the polar of the given point P with respect to the hyperbola and the point P is called the pole of the polar.
The equation of the required polar with $\left(x_{1}, y_{1}\right)$ as its pole is
$\frac{x x_{1}}{a^{2}}-\frac{y y_{1}}{b^{2}}=1$

Note: Polar of the focus is the directrix.
Any tangent is the polar of its point of contact.
(1) Pole of a given line:The pole of a given line $l x+m y+n=0$ with respect to the hyperbola
$\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ is $\left(x_{1}, y_{1}\right)=\left(-\frac{a^{2} l}{n}, \frac{b^{2} m}{n}\right)$

(2) Properties of pole and polar
(i) If the polar of $P\left(x_{1}, y_{1}\right)$ passes through $Q\left(x_{2}, y_{2}\right)$, then the polar of $Q\left(x_{2}, y_{2}\right)$ goes through $P\left(x_{1}, y_{1}\right)$ and such points are said to be conjugate points.
(ii) If the pole of a line $l x+m y+n=0$ lies on the another line $l^{\prime} x+m^{\prime} y+n^{\prime}=0$ then the pole of the second line will lie on the first and such lines are said to be conjugate lines.
(iii) Pole of a given line is same as point of intersection of tangents as its extremities.

Important Tips

If the polars of $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ with respect to the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ are at right angles,

$$
\text { then } \frac{x_{1} x_{2}}{y_{1} y_{2}}+\frac{a^{4}}{b^{4}}=0
$$

