Diameter of the Hyperbola.

The locus of the middle points of a system of parallel chords of a hyperbola is called a diameter and the point where the diameter intersects the hyperbola is called the vertex of the diameter.
Let $y=m x+c$ a system of parallel chords to $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ for different chords then the equation of diameter of the hyperbola is $y=\frac{b^{2} x}{a^{2} m}$, which is passing
 through $(0,0)$

Conjugate diameter: Two diameters are said to be conjugate when each bisects all chords parallel to the others.
If $y=m_{1} x, y=m_{2} x$ be conjugate diameters, then $m_{1} m_{2}=\frac{b^{2}}{a^{2}}$.

Note: If a pair of diameters be conjugate with respect to a hyperbola, they are conjugate with respect to its conjugate hyperbola also.
In a pair of conjugate diameters of a hyperbola. Only one meets the curve in real points.
The condition for the lines $A X^{2}+2 H X Y+B Y^{2}=0$ to be conjugate diameters of $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ is $a^{2} A=b^{2} B$.

Important Tips

- If $C D$ is the conjugate diameter of a diameter CP of the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$, where P is $(a \sec \phi, b \tan \phi)$ then coordinates of D is $(a \tan \phi, b \sec \phi)$, where C is $(0,0)$.

