Asymptotes of a Hyperbola.

An asymptote to a curve is a straight line, at a finite distance from the origin, to which the tangent to a curve tends as the point of contact goes to infinity.
The equations of two asymptotes of the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ are $y= \pm \frac{b}{a} x$ or $\frac{x}{a} \pm \frac{y}{b}=0$.
Note: The combined equation of the asymptotes of the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ is $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=0$. When $b=a$ i.e. the asymptotes of rectangular hyperbola $x^{2}-y^{2}=a^{2}$ are $y= \pm x$, which are at right angles.
A hyperbola and its conjugate hyperbola have the same asymptotes.
The equation of the pair of asymptotes differ the hyperbola and the conjugate hyperbola by the same constant only i.e. Hyperbola - Asymptotes = Asymptotes - Conjugated hyperbola or,
$\left(\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}-1\right)-\left(\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}\right)=\left(\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}\right)-\left(\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}+1\right)$.

The asymptotes pass through the centre of the hyperbola.

The bisectors of the angles between the asymptotes are the coordinate axes.
The angle between the asymptotes of the hyperbola $S=0$ i.e., $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ is $2 \tan ^{-1} \frac{b}{a}$ or $2 \sec ^{-1} e$.
Asymptotes are equally inclined to the axes of the hyperbola.

Important Tips

- The parallelogram formed by the tangents at the extremities of conjugate diameters of a hyperbola has its vertices lying on the asymptotes and is of constant area.
Area of parallelogram $Q R Q^{\prime} R^{\prime}=4$ (Area of parallelogram $\left.Q D C P\right)=4 a b=$ Constant
- The product of length of perpendiculars drawn from any point on the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ to the asymptotes is $\frac{a^{2} b^{2}}{a^{2}+b^{2}}$.

