Rectangular or Equilateral Hyperbola.

(1) Definition:A hyperbola whose asymptotes are at right angles to each other is called a rectangular hyperbola. The eccentricity of rectangular hyperbola is always $\sqrt{2}$.
The general equation of second degree represents a rectangular hyperbola if $\Delta \neq 0, h^{2}>a b$ and coefficient of $x^{2}+$ coefficient of $y^{2}=0$

The equation of the asymptotes of the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ are given by $y= \pm \frac{b}{a} x$.
The angle between these two asymptotes is given by $\tan \theta=\frac{\frac{b}{a}-\left(-\frac{b}{a}\right)}{1+\frac{b}{a}\left(\frac{-b}{a}\right)}=\frac{2 b / a}{1-b^{2} / a^{2}}=\frac{2 a b}{a^{2}-b^{2}}$.
If the asymptotes are at right angles, then $\theta=\pi / 2 \Rightarrow \tan \theta=\tan \frac{\pi}{2} \Rightarrow \frac{2 a b}{a^{2}-b^{2}}=\tan \frac{\pi}{2}$ $\Rightarrow a^{2}-b^{2}=0 \Rightarrow a=b \Rightarrow 2 a=2 b$. Thus the transverse and conjugate axis of a rectangular hyperbola are equal and the equation is $x^{2}-y^{2}=a^{2}$. The equations of the asymptotes of the rectangular hyperbola are $y= \pm x$ i.e., $y=x$ and $y=-x$. Clearly, each of these two asymptotes is inclined at 45° to the transverse axis.

(2) Equation of the rectangular hyperbola referred to its asymptotes as the axes of

 coordinates:Referred to the transverse and conjugate axis as the axes of coordinates, the equation of the rectangular hyperbola is$x^{2}-y^{2}=a^{2}$
The asymptotes of (i) are $y=x$ and $y=-x$. Each of these two asymptotes is inclined at an angle of 45° with the transverse axis, So, if we rotate the coordinate axes through an angle of $-\pi / 4$ keeping the origin fixed, then the axes coincide with the asymptotes of the hyperbola and $x=X \cos (-\pi / 4)-Y \sin (-\pi / 4)=\frac{X+Y}{\sqrt{2}}$ and $y=X \sin (-\pi / 4)+Y \cos (-\pi / 4)=\frac{Y-X}{\sqrt{2}}$.

Substituting the values of x and y in (i),
We obtain the $\left(\frac{X+Y}{\sqrt{2}}\right)^{2}-\left(\frac{Y-X}{\sqrt{2}}\right)^{2}=a^{2} \Rightarrow X Y=\frac{a^{2}}{2} \Rightarrow X Y=c^{2}$
Where $c^{2}=\frac{a^{2}}{2}$.

This is transformed equation of the rectangular hyperbola (i).
(3) Parametric co-ordinates of a point on the hyperbola $X \boldsymbol{X}=\boldsymbol{c}^{2}$:If t is non-zero variable, the coordinates of any point on the rectangular hyperbola $x y=c^{2}$ can be written as $(c t, c / t)$. The point $(c t, c / t)$ on the hyperbola $x y=c^{2}$ is generally referred as the point ' t.
For rectangular hyperbola the coordinates of foci are ($\pm a \sqrt{2}, 0$) and directricesare $x= \pm a \sqrt{2}$. For rectangular hyperbola $x y=c^{2}$, the coordinates of foci are $(\pm c \sqrt{2}, \pm c \sqrt{2})$ and directrices are $x+y= \pm c \sqrt{2}$.
(4) Equation of the chord joining points $\boldsymbol{t}_{\boldsymbol{1}}$ and $\boldsymbol{t}_{\boldsymbol{2}}$: The equation of the chord joining two points $\left(c t_{1}, \frac{c}{t_{1}}\right)$ and $\left(c t_{2}, \frac{c}{t_{2}}\right)$ on the hyperbola $x y=c^{2}$ is $y-\frac{c}{t_{1}}=\frac{\frac{c}{t_{2}}-\frac{c}{t_{1}}}{c t_{2}-c t_{1}}\left(x-c t_{1}\right) \Rightarrow x+y t_{1} t_{2}=c\left(t_{1}+t_{2}\right)$.
(5) Equation of tangent in different forms
(i) Point form:The equation of tangent at $\left(x_{1}, y_{1}\right)$ to the hyperbola $x y=c^{2}$ is $x y_{1}+y x_{1}=2 c^{2}$ or $\frac{x}{x_{1}}+\frac{y}{y_{1}}=2$
(ii) Parametric form : The equation of the tangent at $\left(c t, \frac{c}{t}\right)$ to the hyperbola $x y=c^{2}$ is $\frac{x}{t}+y t=2 c$. On replacing x_{1} by $c t$ and y_{1} by $\frac{c}{t}$ on the equation of the tangent at $\left(x_{1}, y_{1}\right)$ i.e. $x y_{1}+y x_{1}=2 c^{2}$ we get $\frac{x}{t}+y t=2 c$.

Note: Point of intersection of tangents at ' t_{1} ' and ' t_{2} ' is $\left(\frac{2 c t_{1} t_{2}}{t_{1}+t_{2}}, \frac{2 c}{t_{1}+t_{2}}\right)$

(6) Equation of the normal in different forms:

(i) Point form : The equation of the normal at $\left(x_{1}, y_{1}\right)$ to the hyperbola $x y=c^{2}$ is $x x_{1}-y y_{1}=x_{1}^{2}-y_{1}^{2}$. As discussed in the equation of the tangent, we have $\left(\frac{d y}{d x}\right)_{\left(x_{1}, y_{1)}\right.}=-\frac{y_{1}}{x_{1}}$
So, the equation of the normal at $\left(x_{1}, y_{1}\right)$ is $y-y_{1}=\frac{-1}{\left(\frac{d y}{d x}\right)_{\left(x_{1}, y_{1}\right)}}\left(x-x_{1}\right) \Rightarrow y-y_{1}=\frac{x_{1}}{y_{1}}\left(x-x_{1}\right)$
$\Rightarrow y y_{1}-y_{1}^{2}=x x_{1}-x_{1}^{2} \Rightarrow x x_{1}-y y_{1}=x_{1}^{2}-y_{1}^{2}$
This is the required equation of the normal at $\left(x_{1}, y_{1}\right)$.
(ii) Parametric form: The equation of the normal at $\left(c t, \frac{c}{t}\right)$ to the hyperbola $x y=c^{2}$ is $x t^{3}-y t-c t^{4}+c=0$. On replacing x_{1} by $c t$ and y_{1} by c / t in the equation.
We obtain $x x_{1}-y y_{1}=x_{1}^{2}-y_{1}^{2}, x c t-\frac{y c}{t}=c^{2} t^{2}-\frac{c^{2}}{t^{2}} \Rightarrow x t^{3}-y t-c t^{4}+c=0$

Note: The equation of the normal at $\left(c t, \frac{c}{t}\right)$ is a fourth degree in t. So, in general, four normals can be drawn from a point to the hyperbola $x y=c^{2}$
If the normal at $\left(c t, \frac{c}{t}\right)$ on the curve $x y=c^{2}$ meets the curve again in ' t '' then; $t^{\prime}=\frac{-1}{t^{3}}$.
Point of intersection of normals at' t_{1} ' and ' t_{2} ' is $\left(\frac{c\left\{t_{1} t_{2}\left(t_{1}^{2}+t_{1} t_{2}+t_{2}^{2}\right)-1\right\}}{t_{1} t_{2}\left(t_{1}+t_{2}\right)}, \frac{c\left\{t_{1}^{3} t_{2}^{3}+\left(t_{1}^{2}+t_{1} t_{2}+t_{2}^{2}\right)\right\}}{t_{1} t_{2}\left(t_{1}+t_{2}\right)}\right)$

Important Tips

- A triangle has its vertices on a rectangular hyperbola; then the orthocentre of the triangle also lies on the same hyperbola.
- All conics passing through the intersection of two rectangular hyperbolas are themselves rectangular hyperbolas.
- An infinite number of triangles can be inscribed in the rectangular hyperbola $x y=c^{2}$ whose all sides touch the parabola $y^{2}=4 a x$.

