
Rectangular or Equilateral Hyperbola. 
 

(1) Definition:A hyperbola whose asymptotes are at right angles to each other is called a 
rectangular hyperbola. The eccentricity of rectangular hyperbola is always 2 . 
The general equation of second degree represents a rectangular hyperbola if  0, abh 2  
and coefficient of 2x + coefficient of 2y  = 0 
 
 

The equation of the asymptotes of the hyperbola 1
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If the asymptotes are at right angles, then 2/ 
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022  ba baba 22  . Thus the transverse and conjugate axis of a rectangular 
hyperbola are equal and the equation is 222 ayx  . The equations of the asymptotes of the 
rectangular hyperbola are xyi.exy   ., and xy  . Clearly, each of these two asymptotes is 

inclined at 45  to the transverse axis. 
 
(2) Equation of the rectangular hyperbola referred to its asymptotes as the axes of 
coordinates:Referred to the transverse and conjugate axis as the axes of coordinates, the 
equation of the rectangular  hyperbola is 

222 ayx      …..(i) 
The asymptotes of (i) are y = x and y = – x. Each of these two asymptotes is inclined at an angle 
of 45  with the transverse axis, So, if we rotate the coordinate axes through an angle of 4/  
keeping the origin fixed, then the axes coincide with the asymptotes of the hyperbola and 
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Substituting the values of x and y in (i), 

We obtain the 2
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This is transformed equation of the rectangular hyperbola (i). 
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(3) Parametric co-ordinates of a point on the hyperbola XY = c2 :If t is non–zero variable, the 
coordinates of any point on the rectangular hyperbola 2cxy   can be written as )/,( tcct . The 
point )/,( tcct  on the hyperbola 2cxy   is generally referred as the point ‘t’. 
For rectangular hyperbola the coordinates of foci are )0,2( a  and directricesare 2ax  . 

For rectangular hyperbola 2cxy  , the coordinates of foci are )2,2( cc   and directrices are 
2cyx  . 

 
(4) Equation of the chord joining points t1 andt2 : The equation of the chord joining two 
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(5) Equation of tangent in different forms 
(i) Point form:The equation of tangent at ),( 11 yx  to the hyperbola 2cxy   is 2
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Note:  Point of intersection of tangents at '' 1t  and '' 2t  is 
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(6) Equation of the normal in different forms: 
 
(i) Point form : The equation of the normal at ),( 11 yx  to the hyperbola 2cxy   is 
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This is the required equation of the normal at ),( 11 yx . 
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Note: The equation of the normal at 
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Important Tips 
 

 A triangle has its vertices on a rectangular hyperbola; then the orthocentre of the triangle 
also lies on the same hyperbola. 

 All conics passing through the intersection of two rectangular hyperbolas are themselves 
rectangular hyperbolas. 

 An infinite number of triangles can be inscribed in the rectangular hyperbola 2cxy   whose 
all sides touch the parabola axy 42  . 

 


