Intersection of a Circle and a Rectangular Hyperbola.

If a circle $x^{2}+y^{2}+2 g x+2 f y+k=0$ cuts a rectangular hyperbola $x y=c^{2}$ in $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D and the parameters of these four points be t_{1}, t_{2}, t_{3} and t_{4} respectively; then
(1) (i) $\sum t_{1}=-\frac{2 g}{c}$
(ii) $\sum t_{1} t_{2}=\frac{k}{c^{2}}$
(iii) $\sum t_{1} t_{2} t_{3}=\frac{-2 f}{c}$
(iv) $t_{1} t_{2} t_{3} t_{4}=1$
(v) $\sum \frac{1}{t_{1}}=-\frac{2 f}{c}$
(2) Orthocentre of $\triangle A B C$ is $H\left(-c t_{4}, \frac{-c}{t_{4}}\right)$ but D is $\left(c t_{4}, \frac{c}{t_{4}}\right)$

Hence H and D are the extremities of a diagonal of rectangular hyperbola.
(3) Centre of mean position of four points is $\left\{\frac{c}{4} \sum t_{1}, \frac{c}{4} \sum\left(\frac{1}{t_{1}}\right)\right\}$ i.e., $\left(-\frac{g}{2},-\frac{f}{2}\right)$
\because Centers of the circles and rectangular hyperbola are ($-g_{1}-f$) and (0,0); midpoint of centers of circle and hyperbola is $\left(-\frac{g}{2},-\frac{f}{2}\right)$. Hence the center of the mean position of the four points bisects the distance between the centers of the two curves (circle and rectangular hyperbola)
(4) If the circle passing through $A B C$ meet the hyperbola in fourth points $D_{\text {, }}$ then center of circle is $\left(-g_{1}-\right.$ f)
i.e., $\left\{\frac{c}{2}\left(t_{1}+t_{2}+t_{3}+\frac{1}{t_{1} t_{2} t_{3}}\right) ; \frac{c}{2}\left(\frac{1}{t_{1}}+\frac{1}{t_{2}}+\frac{1}{t_{3}}+t_{1} t_{2} t_{3}\right)\right\}$

