
Standard equation of the Hyperbola. 
 

Let S be the focus, ZM be the directrix and e be the eccentricity of the hyperbola, then by 
definition, 
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This is the standard equation of the hyperbola. 
 

Some terms related to hyperbola: Let the equation of hyperbola is 1
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(1) Centre :All chords passing through Care bisected at C. Here )0,0(C  

 
(2) Vertex: The point A and A where the curve meets the line joining the foci S and S are called 
vertices of hyperbola. The co-ordinates of A and A are (a, 0) and (– a, 0) respectively. 
 
(3) Transverse and conjugate axes: The straight line joining the vertices A and A is called 
transverse axis of the hyperbola. The straight line perpendicular to the transverse axis and 
passing through the centre is called conjugate axis. 
Here,  transverse axis = aAA 2  
Conjugate axis = bBB 2  
 

(4) Eccentricity: For the hyperbola 1
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(5) Double ordinates: If Q be a point on the hyperbola, QN perpendicular to the axis of the 
hyperbola and produced to meet the curve again at Q  . Then QQ   is called a double ordinate at 
Q. 
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If abscissa of Q is h, then co-ordinates of Q and Q   are 
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respectively. 
 
(6) Latus-rectum: The chord of the hyperbola which passes through the focus and is 
perpendicular to its transverse axis is called latus-rectum. 
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(7) Foci and directrices: The points )0,(aeS  and )0,( aeS   are the foci of the hyperbola and ZM 

and MZ   are two directrices of the hyperbola and their equations are 
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respectively. 
Distance between foci aeSS 2  and distance between directrices eaZZ /2 . 
 
(8) Focal chord: A chord of the hyperbola passing through its focus is called a focal chord. 
 
(9) Focal distance: The difference of any point on the hyperbola from the focus is called the focal distance 
of the point. 
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The difference of the focal distance of a point on the hyperbola is constant and is equal to the 
length of transverse axis. 
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