Standard equation of the Hyperbola.

Let S be the focus, $Z M$ be the directrix and e be the eccentricity of the hyperbola, then by definition,
$\Rightarrow \frac{S P}{P M}=e \Rightarrow(S P)^{2}=e^{2}(P M)^{2}$
$\Rightarrow(x-a . e)^{2}+(y-0)^{2}=e^{2}\left(x-\frac{a}{e}\right)^{2}$
$\Rightarrow \frac{x^{2}}{a^{2}}-\frac{y^{2}}{a^{2}\left(e^{2}-1\right)}=1 \Rightarrow \frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$, where $b^{2}=a^{2}\left(e^{2}-1\right)$

This is the standard equation of the hyperbola.
Some terms related to hyperbola: Let the equation of hyperbola is $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$
(1) Centre :All chords passing through Care bisected at C. Here $C(0,0)$
(2) Vertex: The point A and A^{\prime} where the curve meets the line joining the foci S and S are called vertices of hyperbola. The co-ordinates of A and A^{\prime} are $(a, 0)$ and $(-a, 0)$ respectively.
(3) Transverse and conjugate axes: The straight line joining the vertices A and A^{\prime} is called transverse axis of the hyperbola. The straight line perpendicular to the transverse axis and passing through the centre is called conjugate axis.
Here, transverse axis $=A A^{\prime}=2 a$
Conjugate axis $=B B^{\prime}=2 b$
(4) Eccentricity: For the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$

We have $b^{2}=a^{2}\left(e^{2}-1\right), e=\sqrt{1+\left(\frac{2 b}{2 a}\right)^{2}}=\sqrt{1+\left(\frac{\text { Conjugate axis }}{\text { Transverse axis }}\right)^{2}}$
(5) Double ordinates: If Q be a point on the hyperbola, $Q N$ perpendicular to the axis of the hyperbola and produced to meet the curve again at Q^{\prime}. Then $Q Q^{\prime}$ is called a double ordinate at Q.

If abscissa of Q is h, then co-ordinates of Q and Q^{\prime} are $\left(h, \frac{b}{a} \sqrt{h^{2}-a^{2}}\right)$ and $\left(h,-\frac{b}{a} \sqrt{h^{2}-a^{2}}\right)$ respectively.
(6) Latus-rectum: The chord of the hyperbola which passes through the focus and is perpendicular to its transverse axis is called latus-rectum.
Length of latus-rectum $L L^{\prime}=L_{1} L_{1}^{\prime}=\frac{2 b^{2}}{a}=2 a\left(e^{2}-1\right)$ and end points of latus-rectum $L\left(a e, \frac{b^{2}}{a}\right)$; $L^{\prime}\left(a e, \frac{-b^{2}}{a}\right) ; L_{1}\left(-a e, \frac{b^{2}}{a}\right) ; L_{1}^{\prime}\left(-a e,-\frac{b^{2}}{a}\right)$ respectively.
(7) Foci and directrices: The points $S(a e, 0)$ and $S^{\prime}(-a e, 0)$ are the foci of the hyperbola and $Z M$ and $Z^{\prime} M^{\prime}$ are two directrices of the hyperbola and their equations are $x=\frac{a}{e}$ and $x=-\frac{a}{e}$ respectively.
Distance between foci $S S^{\prime}=2 a e$ and distance between directrices $Z Z^{\prime}=2 a / e$.
(8) Focal chord: A chord of the hyperbola passing through its focus is called a focal chord.
(9) Focal distance: The difference of any point on the hyperbola from the focus is called the focal distance of the point.
From the figure, $S P=e P M=e\left(x_{1}-\frac{a}{e}\right)=e x_{1}-a, S^{\prime} P=e P M^{\prime}=e\left(x_{1}+\frac{a}{e}\right)=e x_{1}+a$
The difference of the focal distance of a point on the hyperbola is constant and is equal to the length of transverse axis.
$\left|S^{\prime} P-S P\right|=2 a=A A^{\prime}=$ Transverse axis

