Auxiliary circle of Hyperbola.

Let $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ be the hyperbola with center C and transverse axis $A^{\prime} A$. Therefore circle drawn with center C and segment $A^{\prime} A$ as a diameter is called auxiliary circle of the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$
$\therefore \quad$ Equation of the auxiliary circle is $x^{2}+y^{2}=a^{2}$

Let $\angle Q C N=\phi$
Here P and Q are the corresponding points on the hyperbola and the auxiliary circle ($0 \leq \phi<2 \pi$)
(1) Parametric equations of hyperbola: The equations $x=a \sec \phi$ and $y=b \tan \phi$ are known as the parametric equations of the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$. This ($a \sec \phi, b \tan \phi$) lies on the hyperbola for all values of ϕ.

Position of points Q on auxiliary circle and the corresponding point P which describes the hyperbola and $0 \leq \phi<2 \pi$

ϕ varies from	$Q(\boldsymbol{a} \cos \varphi, \boldsymbol{a} \sin \varphi)$	$P(\boldsymbol{a} \sec \varphi, \boldsymbol{b} \boldsymbol{\operatorname { t a n } \varphi)}$
0 to $\frac{\pi}{2}$	I	I
$\frac{\pi}{2}$ to π	II	III
π to $\frac{3 \pi}{2}$	III	II

$\frac{3 \pi}{2}$ to 2π	IV	IV

Note: The equations $x=a \cosh \theta$ and $y=b \sinh \theta$ are also known as the parametric equations of the hyperbola and the co-ordinates of any point on the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ are expressible as $(a \cosh \theta, b \sinh \theta)$, where $\cosh \theta=\frac{e^{\theta}+e^{-\theta}}{2}$ and $\sinh \theta=\frac{e^{\theta}-e^{-\theta}}{2}$.

