Auxiliary circle of Hyperbola.

Let $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ be the hyperbola with center *C* and transverse axis *A'A*. Therefore circle drawn with center *C* and segment *A'A* as a diameter is called auxiliary circle of the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$

:. Equation of the auxiliary circle is $x^2 + y^2 = a^2$

Let $\angle QCN = \phi$

Here *P* and *Q* are the corresponding points on the hyperbola and the auxiliary circle $(0 \le \phi < 2\pi)$

(1) **Parametric equations of hyperbola:** The equations $x = a \sec \phi$ and $y = b \tan \phi$ are known as the parametric equations of the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$. This $(a \sec \phi, b \tan \phi)$ lies on the hyperbola for all values of ϕ .

Position of points Q on auxiliary circle and the corresponding point P which describes the hyperbola and $0 \le \phi < 2\pi$			
<i>p</i> varies from	$Q(a \cos \varphi, a \sin \varphi)$	$P(a \sec \varphi, b \tan \varphi)$	
0 to $\frac{\pi}{2}$	Ι	Ι	
$\frac{\pi}{2}$ to π	II	III	
π to $\frac{3\pi}{2}$	III	II	

$\frac{3\pi}{2}$ to 2π	IV	IV
2		

Note: The equations $x = a \cosh \theta$ and $y = b \sin h \theta$ are also known as the parametric equations of the hyperbola and the co-ordinates of any point on the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ are expressible as $(a \cosh \theta, b \sin h \theta)$, where $\cosh \theta = \frac{e^{\theta} + e^{-\theta}}{2}$ and $\sinh \theta = \frac{e^{\theta} - e^{-\theta}}{2}$.