Equations of Normal in Different forms.

(1) Point form:The equation of the normal to the parabola $y^{2}=4 a x$ at a point $\left(x_{1}, y_{1}\right)$ is $y-y_{1}=-\frac{y_{1}}{2 a}\left(x-x_{1}\right)$

Equation of normals of all other standard parabolas at ($\mathbf{x}_{1}, \mathbf{y}_{1}$)

Equation of parabolas	Normal at $\left(\mathbf{x}_{1}, \mathbf{y}_{1}\right)$
$y^{2}=-4 a x$	$y-y_{1}=\frac{y_{1}}{2 a}\left(x-x_{1}\right)$
$x^{2}=4 a y$	$y-y_{1}=-\frac{2 a}{x_{1}}\left(x-x_{1}\right)$
$x^{2}=-4 a y$	$y-y_{1}=\frac{2 a}{x_{1}}\left(x-x_{1}\right)$

(2) Parametric form: The equation of the normal to the parabola $y^{2}=4 a x$ at $\left(a t^{2}, 2 a t\right)$ is $y+t x=2 a t+a t^{3}$

Equations of normal of all other standard parabola at 't'		
Equations of parabolas	Parametric co- ordinates	Normals at 't'
$y^{2}=-4 a x$	$\left(-a t^{2}, 2 a t\right)$	$y-t x=2 a t+a t^{3}$
$x^{2}=4 a y$	$\left(2 a t, a t^{2}\right)$	$x+t y=2 a t+a t^{3}$
$x^{2}=-4 a y$	$\left(2 a t,-a t^{2}\right)$	$x-t y=2 a t+a t^{3}$

(3) Slope form: The equation of normal of slope m to the parabola $y^{2}=4 a x$ is $y=m x-2 a m-a m^{3}$ at the point $\left(a m^{2},-2 a m\right)$.

Equations of normal, point of contact, and condition of normality in terms of slope (m)

Equations of parabola	Point of contact in terms of slope $\mathbf{(m)}$	Equations of normal in terms of slope (m)	Condition of normality
$y^{2}=4 a x$	$\left(a m^{2},-2 a m\right)$	$y=m x-2 a m-a m^{3}$	$c=-2 a m-a m^{3}$
$y^{2}=-4 a x$	$\left(-a m^{2}, 2 a m\right)$	$y=m x+2 a m+a m^{3}$	$c=2 a m+a m^{3}$
$x^{2}=4 a y$	$\left(-\frac{2 a}{m}, \frac{a}{m^{2}}\right)$	$y=m x+2 a+\frac{a}{m^{2}}$	$c=2 a+\frac{a}{m^{2}}$
$x^{2}=-4 a y$	$\left(\frac{2 a}{m},-\frac{a}{m^{2}}\right)$	$y=m x-2 a-\frac{a}{m^{2}}$	$c=-2 a-\frac{a}{m^{2}}$

Note: The line $l x+m y+n=0$ is a normal to the parabola $y^{2}=4 a x$ if $a l\left(l^{2}+2 m^{2}\right)+m^{2} n=0$

