Equations of Normal in Different forms.

(1) **Point form:** The equation of the normal to the parabola $y^2 = 4ax$ at a point (x_1, y_1) is

$$y - y_1 = -\frac{y_1}{2a}(x - x_1)$$

Equation of normals of all other standard parabolas at (x ₁ , y ₁)			
Equation of parabolas	Normal at (x ₁ , y ₁)		
$y^2 = -4ax$	$y - y_1 = \frac{y_1}{2a}(x - x_1)$		
$x^2 = 4ay$	$y - y_1 = -\frac{2a}{x_1}(x - x_1)$		
$x^2 = -4ay$	$y - y_1 = \frac{2a}{x_1}(x - x_1)$		

(2) **Parametric form**: The equation of the normal to the parabola $y^2 = 4ax$ at $(at^2, 2at)$ is $y + tx = 2at + at^3$

Equations of normal of all other standard parabola at 't'				
Equations of parabolas	Parametric co- ordinates	Normals at 't'		
$y^2 = -4ax$	$(-at^2,2at)$	$y - tx = 2at + at^3$		
$x^2 = 4ay$	$(2at,at^2)$	$x + ty = 2at + at^3$		
$x^2 = -4ay$	$(2at,-at^2)$	$x - ty = 2at + at^3$		

(3) **Slope form:** The equation of normal of slope m to the parabola $y^2 = 4ax$ is $y = mx - 2am - am^3$ at the point $(am^2, -2am)$.

Equations of normal, point of contact, and condition of normality in terms of slope (m)				
Equations of parabola	Point of contact in terms of slope (m)	Equations of normal in terms of slope (m)	Condition of normality	
$y^2 = 4ax$	$(am^2,-2am)$	$y = mx - 2am - am^3$	$c = -2am - am^3$	
$y^2 = -4ax$	$(-am^2,2am)$	$y = mx + 2am + am^3$	$c = 2am + am^3$	
$x^2 = 4ay$	$\left(-\frac{2a}{m},\frac{a}{m^2}\right)$	$y = mx + 2a + \frac{a}{m^2}$	$c = 2a + \frac{a}{m^2}$	
$x^2 = -4ay$	$\left(\frac{2a}{m}, -\frac{a}{m^2}\right)$	$y = mx - 2a - \frac{a}{m^2}$	$c = -2a - \frac{a}{m^2}$	

Note: The line lx + my + n = 0 is a normal to the parabola $y^2 = 4ax$ if $al(l^2 + 2m^2) + m^2n = 0$