Relation between ' t_{1} ' and ' t_{2} ' if Normal at ' t_{1} ' meets the Parabola again at 't2' '

If the normal at the point $P\left(a t_{1}^{2}, 2 a t_{1}\right)$ meets the parabola $y^{2}=4 a x$ again at $Q\left(a t_{2}^{2}, 2 a t_{2}\right)$, then $t_{2}=-t_{1}-\frac{2}{t_{1}}$

Important Tips

- If the normals at points $\left(a t_{1}^{2}, 2 a t\right)$ and $\left(a t_{2}^{2}, 2 a t_{2}\right)$ on the parabola $y^{2}=4 a x$ meet on the parabola then $t_{1} t_{2}=2$
- If the normal at a point $P\left(a t^{2}, 2 a t\right)$ to the parabola $y^{2}=4 a x$ subtends a right angle at the vertex of the parabola then $t^{2}=2$.
${ }^{\sigma}$ If the normal to a parabola $y^{2}=4 a x$, makes an angle ϕ with the axis, then it will cut the curve again at an angle $\tan ^{-1}\left(\frac{1}{2} \tan \phi\right)$.
* The normal chord to a parabola $y^{2}=4 a x$ at the point whose ordinate is equal to abscissa subtends a right angle at the focus.
- If the normal at two points P and Q of a parabola $y^{2}=4 a x$ intersect at a third point R on the curve. Then the product of the ordinate of P and Q is $8 a^{2}$.

