Co-normal Points.

The points on the curve at which the normals pass through a common point are called conormal points.
Q, R, S are co-normal points. The co- normal points are also called the feet of the normals.
If the normal passes through point $P\left(x_{1}, y_{1}\right)$ which is not on parabola, then
$y_{1}=m x_{1}-2 a m-a m^{3} \Rightarrow a m^{3}+\left(2 a-x_{1}\right) m+y_{1}=0$
Which gives three values of m. Let three values of m are m_{1}, m_{2} and m_{3}, which

are the slopes of the normals at Q, R and S respectively, then the coordinates of Q, R and S are $\left(a m_{1}^{2},-2 a m_{1}\right),\left(a m_{2}^{2},-2 a m_{2}\right)$ and $\left(a m_{3}^{2},-2 a m_{3}\right)$ respectively. These three points are called the feet of the normals.

Now $m_{1}+m_{2}+m_{3}=0, m_{1} m_{2}+m_{2} m_{3}+m_{3} m_{1}=\frac{\left(2 a-x_{1}\right)}{a}$ and $m_{1} m_{2} m_{3}=\frac{-y_{1}}{a}$
In general, three normals can be drawn from a point to a parabola.
(1) The algebraic sum of the slopes of three concurrent normals is zero.
(2) The sum of the ordinates of the co-normal points is zero.
(3) The centroid of the triangle formed by the co-normal points lies on the axis of the parabola.
(4) The centroid of a triangle formed by joining the foots of the normal of the parabola lies on its axis and is given by $\left(\frac{a m_{1}^{2}+a m_{2}^{2}+a m_{3}^{2}}{3}, \frac{2 a m_{1}+2 a m_{2}+2 a m_{3}}{3}\right)=\left(\frac{a m_{1}^{2}+a m_{2}^{2}+a m_{3}^{2}}{3}, 0\right)$
(5) If three normals drawn to any parabola $y^{2}=4 a x$ from a given point (h, k) be real, then $h>2 a$ for $a=1$, normals drawn to the parabola $y^{2}=4 x$ from any point (h, k) are real, if $h>2$.
(6) Out of these three at least one is real, as imaginary normals will always occur in pairs.

