Equation of the Chord joining any two points on the Parabola.

Let $P\left(a t_{1}^{2}, 2 a t_{1}\right), Q\left(a t_{2}^{2}, 2 a t_{2}\right)$ be any two points on the parabola $y^{2}=4 a x$. Then, the equation of the chord joining these points is, $y-2 a t_{1}=\frac{2 a t_{2}-2 a t_{1}}{a t_{2}^{2}-a t_{1}^{2}}\left(x-a t_{1}^{2}\right)$ or $y-2 a t_{1}=\frac{2}{t_{1}+t_{2}}\left(x-a t_{1}^{2}\right)$ or $y\left(t_{1}+t_{2}\right)=2 x+2 a t_{1} t_{2}$
(1) Condition for the chord joining points having parameters $\mathbf{t}_{\mathbf{1}}$ and $\mathbf{t}_{\mathbf{2}}$ to be a focal chord: If the chord joining points $\left(a t_{1}^{2}, 2 a t_{1}\right)$ and $\left(a t_{2}^{2}, 2 a t_{2}\right)$ on the parabola passes through its focus, then $(a, 0)$ satisfies the equation $y\left(t_{1}+t_{2}\right)=2 x+2 a t_{1} t_{2} \Rightarrow 0=2 a+2 a t_{1} t_{2} \Rightarrow t_{1} t_{2}=-1$ or $t_{2}=-\frac{1}{t_{1}}$
(2) Length of the focal chord: The length of a focal chord having parameters t_{1} and t_{2} for its end points is $a\left(t_{2}-t_{1}\right)^{2}$.

Note: If one extremity of a focal chord is $\left(a t_{1}^{2}, 2 a t_{1}\right)$, then the other extremity $\left(a t_{2}^{2}, 2 a t_{2}\right)$ becomes $\left(\frac{a}{t_{1}^{2}}, \frac{-2 a}{t_{1}}\right)$ by virtue of relation $t_{1} t_{2}=-1$.
If one end of the focal chord of parabola is $\left(a t^{2}, 2 a t\right)$, then other end will be $\left(\frac{a}{t^{2}},-2 a t\right)$ and length of chord $=a\left(t+\frac{1}{t}\right)^{2}$.
The length of the chord joining two point ' t_{1} ' and ' t_{2} ' on the parabola $y^{2}=4 a x$ is $a\left(t_{1}-t_{2}\right) \sqrt{\left(t_{1}+t_{2}\right)^{2}+4}$
The length of intercept made by line $y=m x+c$ between the parabola $y^{2}=4 a x$ is

$$
\frac{4}{m^{2}} \sqrt{a\left(1+m^{2}\right)(a-m c)} .
$$

Important Tips

(-) The focal chord of parabola $y^{2}=4 a x$ making an angle α with the x-axis is of length $4 a \cos ^{2} c^{2} \alpha$.

- The length of a focal chord of a parabola varies inversely as the square of its distance from the vertex.
- If l_{1} and l_{2} are the length of segments of a focal chord of a parabola, then its latus-rectum is $\frac{4 l_{1} l_{2}}{l_{1}+l_{2}}$
(The semi latus rectum of the parabola $y^{2}=4 a x$ is the harmonic mean between the segments of any focal chord of the parabola.

