Length of Tangent, Sub tangent, Normal and Subnormal.

Let the parabola $y^{2}=4 a x$. Let the tangent and normal at $P\left(x_{1}, y_{1}\right)$ meet the axis of parabola at T and Grespectively, and tangent at $P\left(x_{1}, y_{1}\right)$ makes angle ψ with the positive direction of x -axis. $A(0,0)$ is the vertex of the parabola and $P N=y$. Then,
(1) Length of tangent $=P T=P N \operatorname{cosec} \psi=y_{1} \operatorname{cosec} \psi$
(2) Length of normal $=P G=P N \operatorname{cosec}\left(90^{\circ}-\psi\right)=y_{1} \sec \psi$
(3) Length of subtangent $=T N=P N \cot \psi=y_{1} \cot \psi$
(4) Length of subnormal $=N G=P N \cot \left(90^{\circ}-\psi\right)=y_{1} \tan \psi$

where $, \tan \psi=\frac{2 a}{y_{1}}=m, \quad$ [slope of tangent at $\mathrm{P}(\mathrm{x}, \mathrm{y})$]

Length of tangent, subtangent, normal and subnormal to $\mathbf{y}^{\mathbf{2}}=\mathbf{4 a x}$ at (at ${ }^{\mathbf{2}}, \mathbf{2 a t}$)

(1) Length of tangent at $\left(a t^{2}, 2 a t\right)=2 a t \operatorname{cosec} \psi=2 a t \sqrt{\left(1+\cot ^{2} \psi\right)}=2 a t \sqrt{1+t^{2}}$
(2) Length of normal at $\left(a t^{2}, 2 a t\right)=2 a t \sec \psi=2 a t \sqrt{\left(1+\tan ^{2} \psi\right)}=2 a \sqrt{t^{2}+t^{2} \tan ^{2} \psi}=2 a \sqrt{\left(t^{2}+1\right)}$
(3) Length of subtangent at $\left(a t^{2}, 2 a t\right)=2 a t \cot \psi=2 a t^{2}$
(4) Length of subnormal at $\left(a t^{2}, 2 a t\right)=2 a t \tan \psi=2 a$

