
Length of Tangent, Sub tangent, Normal and Subnormal.

Let the parabola $y^2 = 4ax$. Let the tangent and normal at $P(x_1, y_1)$ meet the axis of parabola at T and Grespectively, and tangent at $P(x_1, y_1)$ makes angle ψ with the positive direction of x-axis.

A(0,0) is the vertex of the parabola and PN = y. Then, (1) Length of tangent $= PT = PN \operatorname{cosec} \psi = y_1 \operatorname{cosec} \psi$ (2) Length of normal $= PG = PN\operatorname{cosec}(90^\circ - \psi) = y_1 \sec \psi$ (3) Length of subtangent $= TN = PN \cot \psi = y_1 \cot \psi$ (4) Length of subnormal $= NG = PN \cot(90^\circ - \psi) = y_1 \tan \psi$

where , $\tan \psi = \frac{2a}{y_1} = m$, [slope of tangent at P(x, y)]

Length of tangent, subtangent, normal and subnormal to $y^2 = 4ax at (at^2, 2at)$

- (1) Length of tangent at $(at^2, 2at) = 2at \operatorname{cosec} \psi = 2at \sqrt{(1 + \cot^2 \psi)} = 2at \sqrt{1 + t^2}$
- (2) Length of normal at $(at^2, 2at) = 2at \sec \psi = 2at \sqrt{(1 + \tan^2 \psi)} = 2a \sqrt{t^2 + t^2 \tan^2 \psi} = 2a \sqrt{(t^2 + 1)}$
- (3) Length of subtangent at $(at^2, 2at) = 2at \cot \psi = 2at^2$
- (4) Length of subnormal at $(at^2, 2at) = 2at \tan \psi = 2a$