Pole and Polar.

The locus of the point of intersection of the tangents to the parabola at the ends of a chord drawn from a fixed point P is called the polar of point P and the point P is called the pole of the polar.
Equation of polar: Equation of polar of the point $\left(x_{1}, y_{1}\right)$ with respect to parabola $y^{2}=4 a x$ is same as chord of contact and is given by $y y_{1}=2 a\left(x+x_{1}\right)$

(1) Polar of the focus is directrix: Since the focus is $(a, 0)$
\therefore Equation of polar of $y^{2}=4 a x$ is $y .0=2 a(x+a) \Rightarrow x+a=0$, which is the directrix of the parabola $y^{2}=4 a x$.
(2) Any tangent is the polar of its point of contact: If the point $P\left(x_{1} y_{1}\right)$ be on the parabola. Its polar and tangent at P are identical. Hence the tangent is the polar of its own point of contact.
Coordinates of pole: The pole of the line $l x+m y+n=0$ with respect to the parabola $y^{2}=4 a x$ is $\left(\frac{n}{l}, \frac{-2 a m}{l}\right)$.

(i) Pole of the chord joining $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ is $\left(\frac{y_{1} y_{2}}{4 a}, \frac{y_{1}+y_{2}}{2}\right)$ which is the same as the point of intersection of tangents at $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$.
(ii) The point of intersection of the polar of two points Q and R is the pole of $Q R$.

