Equation of Tangent in Different forms

(1) Point Form: The equation of the tangent to the parabola $y^{2}=4 a x$ at a point $\left(x_{1}, y_{1}\right)$ is $y y_{1}=2 a\left(x+x_{1}\right)$

Equation of tangent of all other standard parabolas at $\left(\mathbf{x}_{1}, \mathbf{y}_{\mathbf{1}}\right)$	
Equation of parabolas	
$y^{2}=-4 a x$	Tangent at $\left(\mathbf{x}_{1}, \mathbf{y}_{\mathbf{1}}\right)$
$x^{2}=4 a y$	$y y_{1}=-2 a\left(x+x_{1}\right)$
$x^{2}=-4 a y$	$x x_{1}=2 a\left(y+y_{1}\right)$

Note: The equation of tangent at $\left(x_{1}, y_{1}\right)$ to a curve can also be obtained by replacing x^{2} by $x x_{1}, y^{2}$ by $y y_{1}, \mathrm{x}$ by $\frac{x+x_{1}}{2}$, y by $\frac{y+y_{1}}{2}$ and xy by $\frac{x y_{1}+x_{1} y}{2}$ provided the equation of curve is a polynomial of second degree in x and y .
(2) Parametric form:The equation of the tangent to the parabola $y^{2}=4 a x$ at $\left(a t^{2}, 2 a t\right)$ is $t y=x+a t^{2}$

Equations of tangent of all other standard parabolas at 't'

Equations of parabolas Parametric co-ordinates Tangent at 't'

	't'	
$y^{2}=-4 a x$	$\left(-a t^{2}, 2 a t\right)$	$t y=-x+a t^{2}$
$x^{2}=4 a y$	$\left(2 a t, a t^{2}\right)$	$t x=y+a t^{2}$
$x^{2}=-4 a y$	$\left(2 a t,-a t^{2}\right)$	$t x=-y+a t^{2}$

(3) Slope Form: The equation of a tangent of slope m to the parabola $y^{2}=4 a x a t\left(\frac{a}{m^{2}} \frac{2 a}{m}\right)$ is $y=m x+\frac{a}{m}$

Equation of parabolas	Point of contact in terms of slope $\mathbf{(m)}$	Equation of tangent in terms of slope $\mathbf{(m)}$	Condition of Tangency
$y^{2}=4 a x$	$\left(\frac{a}{m^{2}}, \frac{2 a}{m}\right)$	$y=m x+\frac{a}{m}$	$c=\frac{a}{m}$
$y^{2}=-4 a x$	$\left(-\frac{a}{m^{2}},-\frac{2 a}{m}\right)$	$y=m x-\frac{a}{m}$	$c=-\frac{a}{m}$
$x^{2}=4 a y$	$\left(2 a m, a m^{2}\right)$	$y=m x-a m^{2}$	$c=-a m^{2}$
$x^{2}=-4 a y$	$\left(-2 a m,-a m^{2}\right)$	$y=m x+a m^{2}$	$c=a m^{2}$

Important Tips

σ If the straight line $l x+m y+n=0$ touches the parabola $y^{2}=4 a x$ then $\ln =a m^{2}$.

- If the line $x \cos \alpha+y \sin \alpha=p$ touches the parabola $y^{2}=4 a x$, then $P \cos \alpha+a \sin ^{2} \alpha=0$ and point of contact is $\left(a \tan ^{2} \alpha,-2 a \tan \alpha\right)$
(av If the line $\frac{x}{l}+\frac{y}{m}=1$ touches the parabola $y^{2}=4 a(x+b)$, then $m^{2}(l+b)+a l^{2}=0$

