Point of intersection of Tangents at any two points on the Parabola.

The point of intersection of tangents at two points $P\left(a t_{1}^{2}, 2 a t_{1}\right)$ and $Q\left(a t_{2}^{2}, 2 a t_{2}\right)$ on the parabola $y^{2}=4 a x$ is $\left(a t_{1} t_{2}, a\left(t_{1}+t_{2}\right)\right)$.
The locus of the point of intersection of tangents to the parabola $y^{2}=4 a x$ which meet at an angle α is $(x+a)^{2} \tan ^{2} \alpha=y^{2}-4 a x$.

Director circle: The locus of the point of intersection of perpendicular
 tangents to a conic is known as its director circle. The director circle of a parabola is its directrix.

Note: Clearly, x-coordinates of the point of intersection of tangents at P and Q on the parabola is the G.M of the x-coordinate of P and Q and y-coordinate is the A.M. of y-coordinate of P and Q .
The equation of the common tangents to the parabola $y^{2}=4 a x$ and $x^{2}=4 b y$ is
$a^{\frac{1}{3}} x+b^{\frac{1}{3}} y+a^{\frac{2}{3}} b^{\frac{2}{3}}=0$

The tangents to the parabola $y^{2}=4 a x$ at $P\left(a t_{1}^{2}, 2 a t_{1}\right)$ and $Q\left(a t_{2}^{2}, 2 a t_{2}\right)$ intersect at R.

Then the area of triangle $P Q R$ is $\frac{1}{2} a^{2}\left(t_{1}-t_{2}\right)^{3}$

