Equation of Pair of Tangents from a point to a Parabola.

If $y_{1}^{2}-4 a x_{1}>0$, then any point $P\left(x_{1}, y_{1}\right)$ lies out side the parabola and a pair of tangents PQ, PR can be drawn to it from P
The combined equation of the pair of the tangents drawn from a point to a parabola is $S S^{\prime}=T^{2}$ where $S=y^{2}-4 a x ; S^{\prime}=y_{1}^{2}-4 a x_{1}$ and $T=y y_{1}-2 a\left(x+x_{1}\right)$

Note: The two tangents can be drawn from a point to a parabola. The two tangent are real and distinct or coincident or imaginary according as the given point lies outside, on or inside the parabola.

Important Tips

- Tangents at the extremities of any focal chord of a parabola meet at right angles on the directrix.
Area of the triangle formed by three points on a parabola is twice the area of the triangle formed by the tangents at these points.
- If the tangents at the points P and Q on a parabola meet in T , then ST is the geometric mean between SP and SQ, i.e. $S T^{2}=S P . S Q$
- Tangent at one extremity of the focal chord of a parabola is parallel to the normal at the other extremity.
The angle of intersection of two parabolas $y^{2}=4 a x$ and $x^{2}=4 b y$ is given by $\tan ^{-1} \frac{3 a^{1 / 3} b^{1 / 3}}{2\left(a^{2 / 3}+b^{2 / 3}\right)}$

