Equation of Pair of Tangents from a point to a Parabola.

If $y_1^2 - 4ax_1 > 0$, then any point $P(x_1, y_1)$ lies out side the parabola and a pair of tangents PQ, PR can be drawn to it from P The combined equation of the pair of the tangents drawn from a point to a parabola is $SS' = T^2$ where $S = y^2 - 4ax$; $S' = y_1^2 - 4ax_1$ and $T = yy_1 - 2a(x + x_1)$

Note: The two tangents can be drawn from a point to a parabola. The two tangent are real and distinct or coincident or imaginary according as the given point lies outside, on or inside the parabola.

Important Tips

Tangents at the extremities of any focal chord of a parabola meet at right angles on the directrix.

Area of the triangle formed by three points on a parabola is twice the area of the triangle formed by the tangents at these points.

The tangents at the points P and Q on a parabola meet in T, then ST is the geometric mean between SP and SQ, i.e. $ST^2 = SP.SQ$

Tangent at one extremity of the focal chord of a parabola is parallel to the normal at the other extremity.

The angle of intersection of two parabolas $y^2 = 4ax$ and $x^2 = 4by$ is given by $\tan^{-1} \frac{3a^{1/3}b^{1/3}}{2(a^{2/3} + b^{2/3})}$