1. Operations on Sets.

(1) Union of sets:Let A and B be two sets. The union of A and B is the set of all elements which are in set A or in B . We denote the union of A and B by $A \cup B$ Which is usually read as "A union B".

Symbolically, $A \cup B=\{x: x \in A$ or $x \in B\}$.
It should be noted here that we take standard mathematical usage of "or". When
 we say that $x \in A$ or $x \in B$ we do not exclude the possibility that x is a member of both A and B.

Note: If $A_{1}, A_{2}, \ldots \ldots ., A_{n}$ is a finite family of sets, then their union is denoted by $\bigcup_{i=1}^{n} A_{i}$ or $A_{1} \cup A_{2} \cup A_{3} \ldots \ldots \cup A_{n}$.
(2) Intersection of sets:Let A and B be two sets. The intersection of A and B is the set of all those elements that belong to both A and B.

The intersection of A and B is denoted by $A \cap B$ (read as " A intersection B ")
Thus, $A \cap B=\{x: x \in A$ and $x \in B\}$.
Clearly, $x \in A \cap B \Leftrightarrow x \in A$ and $x \in B$.

In fig. the shaded region represents $A \cap B$. Evidently $A \cap B \subseteq A, A \cap B \subseteq B$.
Note: If $A_{1}, A_{2}, A_{3} \ldots \ldots . ., A_{n}$ is a finite family of sets, then their intersection is denoted by $\bigcap_{i=1}^{n} A_{i}$ or $A_{1} \cap A_{2} \cap A_{3} \cap \ldots \ldots \curvearrowright A_{n}$
(3) Disjoint sets: Two sets A and B are said to be disjoint, if $A \cap B=\phi$. If $A \cap B \neq \phi$, then A and B are said to be non-intersecting or non-overlapping sets.
In other words, if A and B have no element in common, then A and B are called disjoint sets.
Example: Sets $\{1,2\} ;\{3,4\}$ are disjoint sets.
(4) Difference of sets:Let A and B be two sets. The difference of A and B written as $A-B$, is the set of all those elements of A which do not belong to B. Thus, $A-B=\{x: x \in A$ and $x \notin B\}$

or $\quad A-B=\{x \in A: x \notin B\}$
Clearly, $x \in A-B \Leftrightarrow x \in A$ and $x \notin B$. In fig. the shaded part represents $A-B$.
Similarly, the difference $B-A$ is the set of all those elements of B that do not belong to A i.e.
$B-A=\{x \in B: x \notin A\}$
Example: Consider the sets $A=\{1,2,3\}$ and $B=\{3,4,5\}$, then $A-B=\{1,2\} ; B-A=\{4,5\}$
As another example, $R-Q$ is the set of all irrational numbers.
(5) Symmetric difference of two sets: Let A and B be two sets. The symmetric difference of sets A and B is the set $(A-B) \cup(B-A)$ and is denoted by $A \Delta B$. Thus, $A \Delta B=$ $(A-B) \cup(B-A)=\{x: x \notin A \cap B\}$
(6) Complement of a set: Let U be the universal set and let A be a set such that $A \subset U$. Then, the complement of A with respect to U is denoted by A^{\prime} or A^{c} or $C(A)$ or $\mathrm{U}-\mathrm{A}$ and is defined the set of all those elements of U which are not in A.

Thus, $A^{\prime}=\{x \in U: x \notin A\}$.
Clearly, $\quad x \in A^{\prime} \Leftrightarrow x \notin A$
Example: Consider $U=\{1,2, \ldots \ldots ., 10\}$ and $A=\{1,3,5,7,9\}$.

Then $A^{\prime}=\{2,4,6,8,10\}$

