1. Operations on Sets.

(1) Union of sets:Let A and B be two sets. The union of A and B is the set of all elements which

are in set A or in B. We denote the union of A and B by $A \cup B$

Which is usually read as "A union B".

Symbolically, $A \cup B = \{x : x \in A \text{ or } x \in B\}.$

It should be noted here that we take standard mathematical usage of "or". When

we say that $x \in A$ or $x \in B$ we do not exclude the possibility that x is a member of both A and B.

Note: If A_1, A_2, \dots, A_n is a finite family of sets, then their union is denoted by $\bigcup_{i=1}^n A_i$ or $A_1 \cup A_2 \cup A_3, \dots, \cup A_n$.

(2) Intersection of sets: Let A and B be two sets. The intersection of A and B is the set of all

those elements that belong to both A and B.

The intersection of A and B is denoted by $A \cap B$ (read as "A intersection B")

Thus, $A \cap B = \{x : x \in A \text{ and } x \in B\}.$

Clearly, $x \in A \cap B \Leftrightarrow x \in A$ and $x \in B$.

In fig. the shaded region represents $A \cap B$. Evidently $A \cap B \subseteq A$, $A \cap B \subseteq B$.

Note: If $A_1, A_2, A_3, \dots, A_n$ is a finite family of sets, then their intersection is denoted by $\bigcap_{i=1}^{n} A_i$ or

$$A_1 \cap A_2 \cap A_3 \cap \dots \cap A_n$$

(3) **Disjoint sets:** Two sets A and B are said to be disjoint, if $A \cap B = \phi$. If $A \cap B \neq \phi$, then A and B are said to be non-intersecting or non-overlapping sets.

In other words, if A and B have no element in common, then A and B are called disjoint sets. Example: Sets {1, 2}; {3, 4} are disjoint sets.

(4) **Difference of sets:**Let A and B be two sets. The difference of A and B written as A – B, is the set of all those elements of A which do not belong to B.

Thus, $A - B = \{x: x \in A \text{ and } x \notin B\}$

or $A - B = \{x \in A : x \notin B\}$

Clearly, $x \in A - B \Leftrightarrow x \in A$ and $x \notin B$. In fig. the shaded part represents A - B. Similarly, the difference B - A is the set of all those elements of B that do not belong to A i.e. $B - A = \{x \in B : x \notin A\}$ Example: Consider the sets $A = \{1, 2, 3\}$ and $B = \{3, 4, 5\}$, then $A - B = \{1, 2\}; B - A = \{4, 5\}$

As another example, R - Q is the set of all irrational numbers.

(5) **Symmetric difference of two sets:** Let A and B be two sets. The symmetric difference of sets A and B is the set $(A - B) \cup (B - A)$ and is denoted by $A \Delta B$. Thus, $A \Delta B = (A - B) \cup (B - A) = \{x : x \notin A \cap B\}$

(6) **Complement of a set:** Let U be the universal set and let A be a set such that $A \subset U$. Then,

the complement of A with respect to U is denoted by A' or A^c or C(A) or U – A and is defined the set of all those elements of U which are not in A. Thus, A' = {x \in U: x \notin A}.

 ${\sf Clearly}, \qquad {\sf x}\in {\sf A}' {\Leftrightarrow} {\sf x} \not\in {\sf A}$

Example: Consider $U = \{1, 2, ..., 10\}$ and $A = \{1, 3, 5, 7, 9\}$.

Then $A' = \{2, 4, 6, 8, 10\}$

