1. Some Important Results on Number of Elements in Sets.

If A, B and C are finite sets and U be the finite universal set, then (1) n (A \cup B) = n (A) + n (B) – n (A \cap B)

- (2) n (A \cup B) = n (A) + n (B) \Leftrightarrow A, B are disjoint non-void sets.
- (3) $n(A B) = n(A) n(A \cap B)$ i.e. $n(A B) + n(A \cap B) = n(A)$
- (4) n (A Δ B) = Number of elements which belong to exactly one of A or B = n ((A - B) \cup (B - A)) = n (A - B) + n(B - A) [\because (A - B) and (B - A) are disjoint] = n(A) - n(A \cap B) + n(B) - n(A \cap B) = n(A) + n(B) - 2n(A \cap B)
- (5) $n(A \cup B \cup C) = n(A) + n(B) + n(C) n(A \cap B) n(B \cap C) n(A \cap C) + n(A \cap B \cap C)$
- (6) n (Number of elements in exactly two of the sets A, B, C) = $n(A \cap B) + n(B \cap C) + n(C \cap A) 3n(A \cap B \cap C)$
- (7) n(Number of elements in exactly one of the sets A, B, C) = n (A) + n (B) + n(C) - $2n(A \cap B) - 2n(B \cap C) - 2n(A \cap C) + 3n(A \cap B \cap C)$
- (8) $n(A' \cup B') = n(A \cap B)' = n(U) n(A \cap B)$
- (9) $n(A' \cap B') = n(A \cup B)' = n(U) n(A \cup B)$