1. Some Important Results on Number of Elements in Sets.

If A, B and C are finite sets and U be the finite universal set, then
(1) $n(A \cup B)=n(A)+n(B)-n(A \cap B)$
(2) $n(A \cup B)=n(A)+n(B) \Leftrightarrow A, B$ are disjoint non-void sets.
(3) $n(A-B)=n(A)-n(A \cap B)$ i.e. $n(A-B)+n(A \cap B)=n(A)$
(4) $n(A \Delta B)=$ Number of elements which belong to exactly one of A or B
$=n((A-B) \cup(B-A))$
$=n(A-B)+n(B-A) \quad[\because(A-B)$ and $(B-A)$ are disjoint $]$
$=n(A)-n(A \cap B)+n(B)-n(A \cap B)=n(A)+n(B)-2 n(A \cap B)$
(5) $n(A \cup B \cup C)=n(A)+n(B)+n(C)-n(A \cap B)-n(B \cap C)-n(A \cap C)+n(A \cap B \cap C)$
(6) n (Number of elements in exactly two of the sets $A, B, C)=n(A \cap B)+n(B \cap C)+n(C \cap A)-$ $3 n(A \cap B \cap C)$
(7) $n($ Number of elements in exactly one of the sets $A, B, C)=n(A)+n(B)+n(C)$

$$
-2 n(A \cap B)-2 n(B \cap C)-2 n(A \cap C)+3 n(A \cap B \cap C)
$$

(8) $n\left(A^{\prime} \cup B^{\prime}\right)=n(A \cap B)^{\prime}=n(U)-n(A \cap B)$
(9) $n\left(A^{\prime} \cap B^{\prime}\right)=n(A \cup B)^{\prime}=n(U)-n(A \cup B)$

