1. Laws of Algebra of Sets.

(1) Idempotent laws:For any set A, we have
(i) $\mathrm{A} \cup \mathrm{A}=\mathrm{A}$
(ii) $A \cap A=A$
(2) Identity laws: For any set A, we have
(i) $\mathrm{A} \cup \phi=\mathrm{A}$
(ii) $A \cap U=A$
i.e. ϕ and U are identity elements for union and intersection respectively.
(3) Commutative laws:For any two sets A and B, we have
(i) $A \cup B=B \cup A$
(ii) $A \cap B=B \cap A$
(iii) $A \Delta B=B \Delta A$
i.e. union, intersection and symmetric difference of two sets are commutative.
(iv) $A-B \neq B-A$
(iv) $A \times B \neq B \times A$
i.e., difference and Cartesian product of two sets are not commutative
(4) Associative laws:If A, B and C are any three sets, then
(i) $(\mathrm{A} \cup \mathrm{B}) \cup \mathrm{C}=\mathrm{A} \cup(\mathrm{B} \cup \mathrm{C})$ (ii) $\mathrm{A} \cap(\mathrm{B} \cap \mathrm{C})=(\mathrm{A} \cap \mathrm{B}) \cap \mathrm{C}$ (iii) $(A \Delta B) \Delta C=A \Delta(B \Delta C)$
i.e., union, intersection and symmetric difference of two sets are associative.
(iv) $(A-B)-C \neq A-(B-C)$ (v) $(A \times B) \times C \neq A \times(B \times C)$
i.e., difference and Cartesian product of two sets are not associative.
(5) Distributive law:If A, B and C are any three sets, then
(i) $A \cup(B \cap C)=(A \cup B) \cap(A \cup C)$ (ii) $A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$
i.e. union and intersection are distributive over intersection and union respectively.
(iii) $A \times(B \cap C)=(A \times B) \cap(A \times C)$
(iv) $A \times(B \cup C)=(A \times B) \cup(A \times C)$
$A \times(B-C)=(A \times B)-(A \times C)$
(6) De-Morgan's law:If A and B are any two sets, then
$\begin{array}{ll}\text { (i) }(A \cup B)^{\prime}=A^{\prime} \cap B^{\prime} & \text { (ii) }(A \cap B)^{\prime}=A^{\prime} \cup B^{\prime}\end{array}$
(iii) $A-(B \cup C)=(A-B) \cap(A-C) \quad$ (iv) $A-(B \cap C)=(A-B) \cup(A-C)$

Note: Theorem 1: If A and B are any two sets, then
(i) $\mathrm{A}-\mathrm{B}=\mathrm{A} \cap \mathrm{B}^{\prime}$
(ii) $B-A=B \cap A^{\prime}$
(iii) $A-B=A \Leftrightarrow A \cap B=\phi$
(iv) $(A-B) \cup B=A \cup B$
(v) $(A-B) \cap B=\phi$
(vi) $A \subseteq B \Leftrightarrow B^{\prime} \subseteq A^{\prime}$
(viii) $(A-B) \cup(B-A)=(A \cup B)-(A \cap B)$

Theorem 2:If A, B and C are any three sets, then
(i) $A-(B \cap C)=(A-B) \cup(A-C) \quad$ (ii) $A-(B \cup C)=(A-B) \cap(A-C)$
(iii) $A \cap(B-C)=(A \cap B)-(A \cap C)$ (iv) $A \cap(B \Delta C)=(A \cap B) \Delta(A \cap C)$

